Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-6j5sx Total loading time: 0.319 Render date: 2021-05-15T12:50:27.219Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Room temperature ferromagnetism of Fe-doped ZnO and MgO thin films prepared by ink-jet printing

Published online by Cambridge University Press:  10 May 2012

Mei Fang
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Wolfgang Voit
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Adrica Kyndiah
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Yan Wu
Affiliation:
Faculty of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan, 430074, P.R.China.
Lyubov Belova
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
K. V. Rao
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm, SE10044, Sweden.
Get access

Abstract

Room temperature magnetic properties of un-doped, as well as 10 at.% Fe-doped ZnO and MgO single-pass layer of ink-jet printed thin films have been investigated to obtain insight into the role of the band gaps and mechanisms for the origin of ferromagnetic order in these materials. It is found that on doping with Fe, the saturation magnetization is enhanced by several-fold in both systems when compared with the respective un-doped thin films. For a “28 nm thick film of Fe-doped ZnO (Diluted Magnetic Semiconductor, DMS) we observe an enhanced moment of 0.465μB /Fe atom while it is around 0.111μB/Fe atom for the doped MgO (Diluted Magnetic Insulator, DMI) film of comparable thickness. Also, the pure ZnO is far more ferromagnetic than pure MgO at comparable low film thicknesses which can be attributed to defect induced magnetism originating from cat-ion vacancies. However, the film thickness dependence of the magnetization and the defect concentrations are found to be significantly different in the two systems so that a comparison of the magnetism becomes more complex for thicker films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Ohno, H., Science 281, 951956 (1998).CrossRefGoogle Scholar
2. Bonanni, A. and Dietl, T., Chemical Society Reviews 39, 528539 (2010).CrossRefGoogle Scholar
3. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Guillen, J. M. O., Johansson, B., and Gehring, G. A., Nature Materials 2, 673677 (2003).CrossRefGoogle Scholar
4. Ramachandran, S., Narayan, J., and Prater, J. T., Applied Physics Letters 90, 115321 (2007).CrossRefGoogle Scholar
5. Coey, J. M. D., Venkatesan, M., and Fitzgerald, C. B., Nat Mater 4, 173179 (2005).CrossRefGoogle Scholar
6. Coey, J. M. D., Solid State Sciences 7, 660667 (2005).CrossRefGoogle Scholar
7. Yang, K., Wu, R., Shen, L., Feng, Y. P., Dai, Y., and Huang, B., Physical Review B 81, 125211 (2010).CrossRefGoogle Scholar
8. Hong, N. H., Sakai, J., Poirot, N., and Brizé, V., Physical Review B - Condensed Matter and Materials Physics 73, 14 (2006).Google Scholar
9. Adeagbo, W. A. and et al. ., Journal of Physics: Condensed Matter 22, 436002 (2010).Google Scholar
10. Xu, Q., Schmidt, H., Zhou, S., Potzger, K., Helm, M., Hochmuth, H., Lorenz, M., Setzer, A., Esquinazi, P., Meinecke, C., and Grundmann, M., Applied Physics Letters 92, 082508 (2008).CrossRefGoogle Scholar
11. Martínez-Boubeta, C., Beltrán, J. I., Balcells, L., Konstantinović, Z., Valencia, S., Schmitz, D., Arbiol, J., Estrade, S., Cornil, J., and Martínez, B., Physical Review B - Condensed Matter and Materials Physics 82 (2010).CrossRefGoogle Scholar
12. Araujo, C. M., Kapilashrami, M., Jun, X., Jayakumar, O. D., Nagar, S., Wu, Y., Arhammar, C., Johansson, B., Belova, L., Ahuja, R., Gehring, G. A., and Rao, K. V., Applied Physics Letters 96, 232505–3 (2010).CrossRefGoogle Scholar
13. Dietl, T., Haury, A., and D’Aubigné, Y. M., Physical Review B - Condensed Matter and Materials Physics 55 (1997).CrossRefGoogle Scholar
14. Xu, X. H., Blythe, H. J., Ziese, M., Behan, A. J., Neal, J. R., Mokhtari, A., Ibrahim, R. M., Fox, A. M., and Gehring, G. A., New Journal of Physics 8, 135 (2006).CrossRefGoogle Scholar
15. Pearton, S. J., Norton, D. P., Ivill, M. P., Hebard, A. F., Zavada, J. M., Chen, W. M., and Buyanova, I. A., IEEE Transactions on Electron Devices 54, 10401048 (2007).CrossRefGoogle Scholar
16. Singh, M., Haverinen, H. M., Dhagat, P., and Jabbour, G. E., Advanced Materials 22, 673685 (2010).CrossRefGoogle Scholar
17. Wu, Y., Rao, K. V., Voit, W., Tamaki, T., Jayakumar, O. D., Belova, L., Liu, Y. S., Glans, P. A., Chang, C. L., and Guo, J. H., IEEE Transactions on Magnetics 46, 21522155 (2010).CrossRefGoogle Scholar
18. Wu, Y., Zhan, Y., Fahlman, M., Fang, M., Rao, K. V., and Belova, L., in ’In-situ’ solution processed room temperature ferromagnetic MgO thin films printed by inkjet technique, (Mater. Res. Soc. Proc. 1292, Boston, MA, 2010,) pp. 105-109.Google Scholar
19. Shannon, R., Acta Crystallographica Section A 32, 751767 (1976).CrossRefGoogle Scholar
20. Kapilashrami, M., Xu, J., Strom, V., Rao, K. V., and Belova, L., Applied Physics Letters 95, 033104–3 (2009).CrossRefGoogle Scholar
21. Straumal, B.B, Mazilkin, A. A., Protasova, S. G., Myatiev, A.A., Straumal, P.B., Gisela Schütz, , Aken, P.A., Goering, E. and Baretzky, B., Physical Review B 79, 205206 (2009).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Room temperature ferromagnetism of Fe-doped ZnO and MgO thin films prepared by ink-jet printing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Room temperature ferromagnetism of Fe-doped ZnO and MgO thin films prepared by ink-jet printing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Room temperature ferromagnetism of Fe-doped ZnO and MgO thin films prepared by ink-jet printing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *