Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-vnkdd Total loading time: 0.165 Render date: 2021-05-07T05:17:26.802Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Room Temperature Ferromagnetism and Band Gap Investigations in Mg Doped ZnO RF/DC Sputtered Films

Published online by Cambridge University Press:  27 February 2013

Sreekanth K. Mahadeva
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, SE100 44 Sweden Department of Physics, Amrita Vishwa Vidyapeetham University, Amritapuri Campus, Kollam 690 525, Kerala, India
Zhi-Yong Quan
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, SE100 44 Sweden Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Linfen 041004, China
J. C. Fan
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, SE100 44 Sweden
Hasan B Albargi
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
Gillian A Gehring
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
Anastasia Riazanova
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, SE100 44 Sweden
L. Belova
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, SE100 44 Sweden
K. V. Rao
Affiliation:
Department of Materials Science, Royal Institute of Technology, Stockholm, SE100 44 Sweden
Get access

Abstract

Mg@ZnO thin films were prepared by DC/RF magnetron co-sputtering in (N2+O2) ambient conditions using metallic Mg and Zn targets. We present a comprehensive study of the effects of film thickness, variation of O2 content in the working gas and annealing temperature on the structural, optical and magnetic properties. The band gap energy of the films is found to increase from 4.1 to 4.24 eV with the increase of O2 partial pressures from 5 to 20 % in the working gas. The films are found to be ferromagnetic at room temperature and the saturation magnetization increases initially with the film’s thickness reaching a maximum value of 14.6 emu/cm3 and then decreases to finally become diamagnetic beyond 95 nm thickness. Intrinsic strain seems to play an important role in the observed structural and magnetic properties of the Mg@ZnO films. On annealing, the as-obtained ‘mostly amorphous’ films in the temperature range 600 to 800°C become more crystalline and consequently the saturation magnetization values reduce.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Furdyna, J. K., J. Appl. Phys. 64, R29 (1988).CrossRef
Sarma, S. D., American Scientist 89, 516 (2001).CrossRef
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000)CrossRef
Coey, J.M.D., Douvalis, A.P., and Fitzgerald, C.B., Nature Mater. 4, 173 (2005).CrossRef
Kapilashrami, M., Xu, J., Ström, V., Rao, K.V., and Belova, L., Appl. Phys. Lett. 95, 033104 (2009).CrossRef
Xing, G., Wang, D., Yi, J., Yang, L., Gao, M. et al. ., Appl. Phys. Lett. 96, 112511 (2010).CrossRef
Yi, J. B., Lim, C. C., Xing, G. Z., Fan, H. M. et al. . Phys. Rev. Lett. 104, 137201 (2010).CrossRef
Zhan, P., Wang, W., Liu, C., Hu, Y., Li, Z., Zhang, Z. et al. ., J. Appl. Phys. 111, 033501 (2012).CrossRef
Araujo, C. M., Kapilashrami, M., Jun, X. et al. ., Appl. Phys. Lett. 96, 232505 (2010).CrossRef
Nagar, S., Jayakumar, O.D, Belova, L., and Rao, K.V., Materials Express 2, 233(2012).CrossRef
Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A. et al. ., J. Appl. Phys. 98, 041301(2005).CrossRef
Li, Y., Deng, R., Yao, B., Xing, G., Wang, D., and Wu, T., Appl. Phys. Lett. 97, 102506 (2010).CrossRef
Bachari, E.M., Baud, G., Ben Amor, S., and Jacquet, M., Thin Solid Films 165, 348, (1999).
Puchert, M. K., Timbrell, P. Y., and Lamb, R. N., J. Vac. Sci. Technol. A 14, 2220 (1996).CrossRef
Straumal, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P., Goering, E., and Baretzky, B., Phys. Status Solidi B 248, 1581 (2011).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Room Temperature Ferromagnetism and Band Gap Investigations in Mg Doped ZnO RF/DC Sputtered Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Room Temperature Ferromagnetism and Band Gap Investigations in Mg Doped ZnO RF/DC Sputtered Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Room Temperature Ferromagnetism and Band Gap Investigations in Mg Doped ZnO RF/DC Sputtered Films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *