Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-23T00:24:52.025Z Has data issue: false hasContentIssue false

The Role of Colloids in Nuclear Waste Disposal

Published online by Cambridge University Press:  25 February 2011

A. Avogadro
Affiliation:
Commission of European Communities, Joint Research Centre, 21020 ISPRA (Varese), ITALY
G.De Marsily
Affiliation:
Ecole des Mines de Paris, 35 rue Saint Honoré, 77305 Fontainebleau, France
Get access

Abstract

Aspects of formation and characterization of a radioactive colloidal fraction released by the waste form or produced by association with microcolloids naturally existing in ground water or produced either by corrosion of container material or by degradation of backfill material are discussed. A filtration model has been developed in order to describe colloidal transport under field conditions. Comparison between data obtained with laboratory column experiments and theoretical evaluations is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avogadro, A., Murray, C.N., De Plano, A., Bidoglio, G.: Underground migration of long-lived radionuclides leached from a borosilicate glass matrix; IAEA-SM,4-257/73 Vienna, 1982.Google Scholar
2. Avogadro, A. and Lanza, F.: Relationship between glass leaching mechanism and geochemical transport of radionuclides; Scientific Basis for Radioactive Waste Management Vol. 5 Werner Lutze Ed. Elsevier Science Publ. Co. N.Y. (1982).Google Scholar
3. Nowak, E.J.: Radionuclide sorption and migration studies of getters for Backfill barriers SAND 791110 (July 1980).Google Scholar
4. Pusch, R.: Stability of bentonite gels in crystalline rock-Physical aspects; SKBF/KBS Teknish Rapport 83-04 (1983).Google Scholar
5. Champ, D.R. and Merritt, W.F.: Particulate transport of Cesium in groundwater.AECL-7440 (1981).Google Scholar
6. Starik, I.E. and Ginzburg, F.L.: The colloidal behaviour of Americium; Radiokhimiya, 6, 685 (1961).Google Scholar
7. Olofsson, V., Allard, B., Andersson, K. and Torstenfelt, B.: Formation and properties of Americium colloids in aqueous systems; Scientific Basis for Nuclear Waste Management Vol. 4, Topp, S. (Ed) Elsevier Sci. Publ. Co N.Y. (1982).Google Scholar
8. Small, H.: J. Colloid interface Sci., 48, 147161, 1974.Google Scholar
9. Small, H.: Adv. in Chromatogr. (Giddings, J.C. ed.), 15, 113129, 1977.Google Scholar
10. Dodds, J.: La chromatographie hydrodynamique. Analusis, vol. 10, n. °3, p. 109119, 1982.Google Scholar
11. Nagy, D.J., Silebi, C.A., McHugh, A.J.: J. Colloid Interface Sci., 79, 254267, 1981.Google Scholar
12. Herzig, J.P., Leclerc, D.M. and Le Goff, P.: Flow of suspensions through Porous Hedia; Application to Deep Filtration : Ind. and Eng. Chem. Vol. 62, No. 5 May 1970.Google Scholar
13. wnek, W.J., Gidaspow, D., Wasan, D.T.: The role of colloid chemistry in modelling deep bed liquid filtration. Chem. Eng. Sci., 30, 10351047, 1975.Google Scholar
14. Tien, C., Turian, R.M., Pendse, H.: Simulation of the dynamic behaviour of deep bed filters. AICHE Journal, vol. 25, n. °3, 385395, 1979.CrossRefGoogle Scholar
15. Brenner, H., Gaydos, L.J.: J. of Colloid Interface Sci., 58, 312356, 1977.Google Scholar
16. Dieulin, A.: Filtration de colloides d'actinides par une colonne de sable argileux. Report Ecole des Mines LHM/RD/82/23, 1982.Google Scholar
17. Saltelli, A., Avogadro, A., Bidoglio, G.: Americium filtration in glauconitic sand columns, submitted for publication J.of Nuclear Technol.Google Scholar
18. Bidoglio, G.: Characterization of Am (III) complexes with bicarbonate and carbonate ions at groundwater concentration level; Radiochem. Radioanal. Letters 53/1/45-60/ 1982.Google Scholar
19. Kruyt, H.R.: Colloid Science; Elsevier Publ. Co. (1952).Google Scholar