Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T15:12:17.709Z Has data issue: false hasContentIssue false

Review of Phonon Behavior and Microstructural Development Leading to Martensitic Transformations in NixAl(100-x) Alloys

Published online by Cambridge University Press:  25 February 2011

L. E. Tanner
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
S. M. Shapiro
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
D. Schryvers
Affiliation:
University of Antwerp, R.U.C.A., B-2020 Antwerp, BELGIUM
Y. Noda
Affiliation:
Chiba University, Chiba, 260, JAPAN
Get access

Abstract

Elastic and inelastic neutron-scattering and high-resolution electron-microscopy examinations of the β2 (B2) phase of NixAl(100-x) alloys show a direct relationship between the anomalous changes in lattice dynamical behavior and the evolution of static premartensitic structural configurations as the β2 cools toward its martensitic transformation temperature, Ms. The resulting microstructure is a fine-scale mosaic assembly of nonuniformly distorted and modulated domains, in which {110}<110> shear-plus-shuffle displacements give rise to the {110}B2 micromodulations of ∼1.3 nm wavelength. These displacements are derived from the unusually low energy of the Σ4<ζζ0>–TA2 phonon mode and its anomalous temperaturedependent incomplete softening at ζ = 0 (viz., the elastic constant C) and at ζ ≈ 0.16. These inhomogeneously strained domains (ISDs) are believed to be centered on low strain-amplitude defects. They are viewed as strain embryos of the product 7M(5, 2) martensite but are generally too weak to act as potent nucleation centers. Similar ISD configurations develop at defects with higher strain amplitudes (e.g., dislocations, grain boundaries) and these are the most likely sites for heterogeneous nucleation to occur.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nishiyama, Z., Martensitic Transformations (Academic Press, New York, 1978); M. Ahlers, Prog. Mater. Sci. 30, 135 (1988).Google Scholar
2. Cohen, M., Olson, G. B. and Clapp, P. C. in Proceedings of the International Conference on Martensitic Transformations (ICOMAT-1979) (MIT Press, Cambridge, MA, 1979) p. 1.Google Scholar
3. Tanner, L. E. and Wuttig, M., Mater. Sci. Eng. A 127, 137 (1990).Google Scholar
4. Nakanishi, N., Prog. Mater. Sci. 24, 143 (1980).Google Scholar
5. Petry, W., Heiming, A., Trampenau, J., Alba, M., Herzig, C., Schober, H. R. and Vogl, G., Phys. Rev. B 43, 10933 (1991); 43, 10948 (1991); 43, 10963 (1991).Google Scholar
6. Shapiro, S.M., Larese, J. Z., Noda, Y., Moss, S. C. and Tanner, L. E., Phys. Rev. Lett. 57, 3199 (1986); S. M. Shapiro, B. X. Yang, L. E. Tanner and S. C. Moss, Phys. Rev. Lett. 62, 1298 (1990).Google Scholar
7. Shapiro, S.M., Yang, B. X. Noda, Y., Tanner, L. E., and Schryvers, D., Phys. Rev. B 44, 9301 (1991).Google Scholar
8. Heiming, A., Petry, W., Vogl, G., Trampenau, J., Schober, H. R., Chevrier, J. and Scharpf, O., Z. Phys. B 85, 239 (1991).CrossRefGoogle Scholar
9. Tanner, L. E., Pelton, A. R., Tendeloo, G. van, Schryvers, D. and Wall, M. E., Scr. Metall. 24, 1731 (1990).Google Scholar
10. Tanner, L.E., Schryvers, D. and Shapiro, S.M., Mater. Sci. and Eng. A 127, 205 (1990).Google Scholar
11. Schryvers, D. and Tanner, L. E., Ultramicroscopy 37,241 (1990).Google Scholar
12. Gooding, R. J. and Krumhansl, J., Phys Rev. B 39, 1535 (1989).Google Scholar
13. Singleton, M. F., Murray, J. L. and Nash, P., in Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM, Metals Park, OH, 1986) p. 140.Google Scholar
14. Chakravorty, S. and Wayman, C. M., Metall. Trans. A 7, 555 (1976); 7, 569 (1976); K. Enami, S. Nenno and K. Shimizu, Trans. Jpn. Inst. Met. 14, 161 (1973); K. Enami, A. Nagasawa, and S. Nenno, Scr. Metall. 12, 223 (1978).Google Scholar
15. Ochiai, S. and Ueno, M., Jpn. Inst. Met. 52, 157 (1988).Google Scholar
16. Reynaud, F., J. Appl. Crystallogr. 9, 263 (1976); Scr. Metall. 11, 765 (1977).CrossRefGoogle Scholar
17. Enami, K., Nagasawa, A., and Nenno, S., Scr. Metall. 12, 223 (1978); V. V. Martynov, K. Enami, L. G. Khandros, S. Nenno, and A. V. Tkachenko, Phys. Met. Metallog. 55, No. 5, 136 (1983); Scr. Metall. 17, 1167 (1983).Google Scholar
18. Turchi, P. E. A. and Sluiter, M., these proceedings.Google Scholar
19. Ruscovic, N. and Warlimont, H., Phys. Status Solidi A 44, 609 (1977); K. Enami, J. Hasunuma, A. Nagasawa and S. Nenno, Scr. Metall. 10, 879 (1976).Google Scholar
20. Zhou, J., Comely, P., Trivisonno, J. and Lahrman, D., Proc. IEEE 1990 Ultrasonics Symp., edited by McAvoy, B. R. (IEEE, New York, 1990) p. 1309.Google Scholar
21. Sikka, S. K., Vohra, Y. K. and Chidambaram, J. R., Prog. Mater. Sci. 27, 245 (1982).Google Scholar
22. Cook, H. E., Phys. Rev. B 15, 1477 (1977); D. de Fontaine, Metall. Trans. A 19, 169 (1988).Google Scholar
23. Robertson, I. M. and Wayman, C. M., Philos. Mag. A 48,421 (1983); 48,443 (1983); 48, 629 (1983) and references therein.Google Scholar
24. Moss, S. C., Keating, D. T. and Axe, J. D., in Phase Transitions-1973, edited by Cross, L. E. (Pergamon, New York, 1973) p. 179.Google Scholar
25. Krivoglaz, M. A., Theory of X-ray and Thermal Neutron Scattering by Real Crystals, (Plenum, New York, 1969); E. Burkel, B. V. Guerard, H. Metzger, J. Peisl, and C. M. E. Zeyen, Z. Phys. B 35, 227 (1979).Google Scholar
26. Yelon, W., unpublished data.Google Scholar
27. Clapp, P. C., Phys. Status Solidi B 57, 561 (1973); Mater. Sci. and Eng. A 127, 189 (1990).Google Scholar
28. Gudnin, G. and Gobin, P. F., Metall. Trans. A 13, 1127 (1982).Google Scholar
29. Tanner, L. E., Philos. Mag. 14, 111 (1966); L. E. Tanner, A. R. Pelton and R. Gronsky, J. Phys. (Paris) Colloq. 43, C4-169 (1982).Google Scholar
30. Zener, C., Phys. Rev. 71, 846 (1947).Google Scholar
31. Nagasawa, A, J. Phys. Soc. Jpn. 40, 1021 (1976); in Proceedings of the International Conference on Martensitic Transformations (ICOMAT-86) (Japan Institute of Metals, Sendai 1986) p. 95.Google Scholar
32. Noda, Y., Shapiro, S. M., Shirane, G., Yamada, Y., Fuchizaki, K. and Tanner, L. E., Mater. Sci. Forum 56–58, 299 (1990); Phys. Rev. B 42, 10397 (1990).Google Scholar
33. Yamada, Y., Noda, Y. and Fuchizaki, K., Phys. Rev. B 42, 10405 (1990).Google Scholar
34. Bruce, A. D. and Cowley, R. A., Phase Transitions (Taylor and Francis, London, 1981).Google Scholar
35. Axe, J.D. and Shirane, G., Phys. Rev. B 8, 1965 (1973).Google Scholar
36. Axe, J. D., Shapiro, S. M., Shirane, G. and Riste, T. in Anharmonic Lattices, Structural Transitions, and Melting, edited by Riste, T. (Nordhoff, Leiden, 1974) p. 23.Google Scholar
37. Halperin, B. I. and Varma, C. M., Phys Rev. B 14, 4030 (1976).Google Scholar
38. Yamada, Y., Noda, Y., Takimoto, M. and Furukawa, K., J. Phys. Soc. Jpn. 54, 2940 (1985); Y. Yamada, Y. Noda and M. Takimoto, Solid Sate Commun. 55, 1003 (1985).Google Scholar
39. Fuchizaki, K., Noda, Y., and Yamada, Y., Phys Rev. B 39, 9260 (1989).Google Scholar
40. Saburi, T. and Nenno, S., Proceedings of the International Conference on Martensitic Transformations (ICOMAT-86) (Japan Institute of Metals, Sendai, 1986) p. 89.Google Scholar
41. Gobin, P. F. and Gudnin, G., Solid State Phase Transformations in Metals and Alloys (Editions de Physique, Orsay, 1978) p. 573 Google Scholar
42. Gudnin, G. and Clapp, P. C., Proceedings of the International Conference on Martensitic Transformations (ICOMAT-86) (Japan Institute of Metals, Sendai, 1986) p. 171.Google Scholar
43. Krumhansl, J. A. and Gooding, R. J., Phys. Rev. B 39, 3047 (1989).Google Scholar
44. Verlinden, B. and Delaey, L., Metall. Trans. A 19, 207 (1988).Google Scholar
45. Suezawa, M. and Cook, H. E., Acta Metall., 28, 423 (1980).Google Scholar
46. Cao, W., Krumhansl, J. A. and Gooding, R. J., Phys. Rev. B 41, 11319 (1990); W. Cao and J. A. Krumhansl, Phys. Rev. B 42, 4334 (1990)CrossRefGoogle Scholar
47. Gooding, R. J. and Tanner, L. E., to be published.Google Scholar
48. Schryvers, D. and Tanner, L. E., these proceedings.Google Scholar