Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-20T19:32:21.948Z Has data issue: false hasContentIssue false

The Response of High Voltage 4H-SiC P-N Junction Diodes to Different Edge Termination Techniques

Published online by Cambridge University Press:  10 February 2011

T. N. Oder
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849, USA
C. C. Tin
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849, USA
J. R. Williams
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849, USA
T. Isaacs-Smith
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849, USA
V. Madangarli
Affiliation:
Department of Electrical and computer Engineering, University of South Carolina, Columbia, SC 29208, USA
T. S. Sudarshan
Affiliation:
Department of Electrical and computer Engineering, University of South Carolina, Columbia, SC 29208, USA
Get access

Extract

Edge termination is an important aspect in the design of high power p-n junction devices. In this paper, we compare the breakdown characteristics of 4H-SiC p+-n diodes with oxide passivation and with edge termination using either low or high energy ion implantations. N- and p-type epilayers of 4H-SiC were grown by chemical vapor deposition on n+ 4H-SiC wafers. Circular mesa structures of different diameters were patterned and isolated by reactive ion etching. Four types of samples were fabricated. The first group was not implanted or passivated and was left for control. The second type consisted of oxide-passivated diode structures while the third and fourth types were ion implanted with 30 keV Ar+ and 2.2 MeV He+ ions, respectively. The time dependent breakdown characteristics were determined using a fast voltage ramp technique. The reverse bias breakdown voltages and leakage currents of these diodes were different for the different types of the edge termination. Diodes terminated using 2.2 MeV ion implantation yielded the best breakdown characteristics. A majority of the diodes exhibited abrupt breakdown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Casady, J. B. and Johnson, R. W., Solid- State Electron. 39, 1409 (1996).Google Scholar
2. Palmour, J. W., Edmond, J. A., Kong, H. S. and Carter, C. H. Jr., Physica B 185, 461 (1993).Google Scholar
3. Madelung, O., ed., in Semiconductors - Group IV Elements and III-V Compounds (Springer-Verlag, Berlin, 1991), p. 47.Google Scholar
4. Kelner, G. and Shur, M., in Properties of Silicon Carbide, edited by Harris, G. L, (EMIS Data Review Series 13, 1995) pp. 238246.Google Scholar
5. Neudeck, G. W. in Modular Series on Solid State Devices Vol II: The P-N Junction Diode edited by Neudeck, G. W. and Pierret, R. F. (Addison Wesley Publishing Company, Inc, Reading, 1983), p. 37.Google Scholar
6. Neudeck, P. G. and Fazi, C., J. Appl. Phys. 80(2), 1219 (1996).Google Scholar
7. Takata, I. and Yamada, T., 5th International Symposium on Power Semiconductor Devices and Ics, pp. 205211 (1993).Google Scholar
8. Baliga, B. J., Modern Power Devices, (John Wesley and Sons, New York, 1987) p. 62.Google Scholar
9. Alok, D. and Baliga, B. J., IEEE Trans. Electron Devices 44(6), 1013 (1997).Google Scholar
10. Matus, L. G., Powell, J. A. and Salupo, C. S., Appl. Phys. Lett. 59(14), 1770 (1991).Google Scholar
11. Neudeck, P. G., Larkin, D. J., Powell, J. A., Matus, L. G. and Salupo, C. S., Appl. Phys. Lett. 64(11), 1386 (1994).Google Scholar
12. Kordina, O., Bergman, J. P., Henry, A., Janzen, E., Savage, S., Andre, J., Ramberg, L. P, Linefelt, U., Hermensson, W. and Bergman, K., Appl. Phys. Lett. 67(11), 1561 (1995).Google Scholar
13. Alok, D., Baliga, B. J. and McLarty, P. K., IEEE Electron Device Lett. 15(10), 394 (1994).Google Scholar
14. Raghunathan, R., Alok, D. and Baliga, B. J., IEEE Trans. Electron. Devices 16(6), 226 (1995).Google Scholar
15. Alok, D., Raghunathan, R. and Baliga, B. J., IEEE Trans. Electron. Devices 43(8), 1315 (1996).Google Scholar
16. Tin, C. C, Madangarli, V., Luckowski, E., Casady, J., Isaacs-Smith, T., Williams, J. R., Johnson, R. W., Gradinaru, G. and Sudarshan, T. S., ICSE'96 Proc., Nov. 1996, Penang, Malaysia p. 5558.Google Scholar
17. Edwards, A., Dwight, D. N., Rao, M. V., Ridgway, M. C., Kelner, G. and Papanicolaou, N., J. Appl. Phys. 82(9), 4223 (1997).Google Scholar
18. Tin, C. C., Hu, R., Coston, R. L and Park, J., J. Crystal Growth, 148, 116 (1995).Google Scholar
19. Hu, R., Tin, C. C., Feng, Z. C., Liu, J. and Vohra, Y., Inst. Phys. Conf Ser. 142, 345 (1995).Google Scholar
20. Oder, T. N., Williams, J. R., Mohney, S. E. and Crofton, J., J. Electron. Mater. 27(1) 12 (1998).Google Scholar
21. Oder, T. N., Williams, J. R., Bozack, M. J., Iyer, V., Mohney, S. E. and Crofton, J., J. Electron Mater. 27(4), 324 (1998).Google Scholar