Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7c2ld Total loading time: 0.309 Render date: 2021-11-30T01:14:42.337Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Recoilless Fraction in Amorphous and Nanocrystalline FeCuNbSiB System

Published online by Cambridge University Press:  28 December 2012

Monica Sorescu
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282-0321, USA
Tianhong Xu
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282-0321, USA
Steven Herchko
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282-0321, USA
Get access

Abstract

Differential scanning calorimetry, X-ray diffraction, and room temperature Mössbauer spectrum measurements of Fe73.5Cu1Nb3Si13.5B9 (Finemet) alloy have been carried out in order to study its structural and magnetic properties as a function of annealing temperature. The Mössbauer spectra of annealed Finemet alloy could be fitted with 4 or 5 sextets and one doublet at higher annealing temperatures, revealing the appearance of different crystalline phases corresponding to the different Fe sites above the crystallization temperature. The appearance of the nanocrystalline phases at different annealing temperatures was further confirmed by the recoilless fraction measurements. These made use of our recently-developed dual absorber method, which made it possible to determine precisely the recoilless fractions of the amorphous, nanocrystalline and grain boundary phases separately.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nowik, I., Jacob, I. and Moreh, R., Phys. Rev. B 47, 723 (1993).10.1103/PhysRevB.47.723CrossRef
Rancourt, D.G., Nucl. Instrum. Meth. Phys. Res. B 44, 199 (1989).10.1016/0168-583X(89)90428-XCrossRef
Ruebenbauer, K. and Wdowik, U.D., J. Phys. Chem. Solids 66, 716 (2005).10.1016/j.jpcs.2004.09.006CrossRef
Tewari, S.P., Silotia, P., Bera, K., Phys. Lett. A 249, 537 (1998).10.1016/S0375-9601(98)00742-7CrossRef
Ruebenbauer, K., Wdowik, U.D. and Kwater, M., Physica B 229, 49 (1996).10.1016/S0921-4526(96)00505-4CrossRef
Mostafa, M.F. and Emrick, R.M., Physica B 210, 67 (1995).10.1016/0921-4526(94)00923-JCrossRef
Kobayashi, T. and Fukumura, K., Nucl. Instrum. Meth. 180, 549 (1981).10.1016/0029-554X(81)90098-7CrossRef
Sorescu, M., Mater. Lett. 54, 256 (2002).10.1016/S0167-577X(01)00572-9CrossRef
Blomquist, J., Nucl. Instrum. Meth. Phys. Res. B 268, 209 (2010).10.1016/j.nimb.2009.10.182CrossRef
Sorescu, M., J. Nanopart. Res. 4, 221 (2002).10.1023/A:1019960113846CrossRef
Sorescu, M., Diamandescu, L. and Tarabasanu-Mihaila, D., Mater. Lett. 59, 22 (2005).10.1016/j.matlet.2004.09.009CrossRef
Sorescu, M., J. Mater. Sci. Lett. 21, 283 (2002).10.1023/A:1017911501126CrossRef
Sorescu, M., J. Mater. Sci. Lett. 21, 1759 (2002).10.1023/A:1020916719859CrossRef
Sorescu, M., Diamandescu, L., Tomescu, A. and Krupa, S., Physica B 404, 2159 (2009).10.1016/j.physb.2009.04.006CrossRef
Sorescu, M., Diamandescu, L. and Teodorescu, V.S., Physica B 403, 3838 (2008).10.1016/j.physb.2008.07.027CrossRef
Sorescu, M. and Pourarian, F., Physica B 403, 2754 (2008).10.1016/j.physb.2008.02.006CrossRef
Sorescu, M. and Diamandescu, L., Hyper. Interact. 196, 349 (2010).10.1007/s10751-010-0164-9CrossRef
Sorescu, M., Nucl. Instr. Meth. Phys. Res. B 269, 590 (2011).10.1016/j.nimb.2011.01.013CrossRef
Sorescu, M., J. Non-Cryst. Sol. 356, 1425 (2010).10.1016/j.jnoncrysol.2010.05.001CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Recoilless Fraction in Amorphous and Nanocrystalline FeCuNbSiB System
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Recoilless Fraction in Amorphous and Nanocrystalline FeCuNbSiB System
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Recoilless Fraction in Amorphous and Nanocrystalline FeCuNbSiB System
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *