Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T00:48:09.924Z Has data issue: false hasContentIssue false

Realization and Characterization of Optically-Pumped GaInN-DFB Lasers

Published online by Cambridge University Press:  10 February 2011

R. Hofmann
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
V. Wagner
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
H-P. Gauggel
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
F. Adler
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
P. Ernst
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
A. Sohmer
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
H. Bolay
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
F. Scholz
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
H. Schweizer
Affiliation:
4. Physik. Institut, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Get access

Abstract

We demonstrate room temperature laser activity of optically pumped GaN/GalnN-DFB-lasers. The ridge-waveguide DFB lasers were realized on GaN/GalnN double heterostructures grown by low-pressure metal-organic vapor phase epitaxy. The best laser threshold we achieved is 1.9 MW/cm2.

By varying the grating period, the laser emission wavelength could be tuned from 399 to 415 nm. This allows to determine the dispersion relation of the effective refractive index neff(λ) and the spectral dependence of the pump power density at the laser threshold Pth(λ) over the whole emission range. Furthermore, the shift of the emission wavelength with temperature of the DFB-lasers is investigated and is found to be small compared to the emission wavelength shift of the gain maximum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S., Mukai, T. and Senoh, M.. Appl. Phys. Lett. 64, 1687 (1995).Google Scholar
[2] Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S.. Appl. Phys. Lett. 67, 1868 (1995).Google Scholar
[3] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsuchita, T., Kiyoku, H. and Sugimoto, Y.. Jap. Journ. Appl. Phys. 35, L217 (1996).Google Scholar
[4] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsuchita, T., Kiyoku, H. and Sugimoto, Y.. Appl. Phys. Lett. 68, 3269 (1996).Google Scholar
[5] Amano, H. and Asahi, T. Akasaki, I.. Jap. Journ. Appl. Phys. 29 (1990).Google Scholar
[6] sif Khan, M., Olson, D. T., Van Hove, L. M. and Kuznia, J. N.. Appl. Phys. Lett. 58, 1515 (1991).Google Scholar
[7] Asif Khan, M., Krishnankutty, S., Skogman, R. A., Olson, D. T. and George, T.. Appl. Phys. Lett. 65, 520 (1994).Google Scholar
[8] Amano, H., Tanaka, T., Kunii, Y., Kim, S. T. and Akasaki, I.. Appl. Phys. Lett. 64, 1377 (1994).Google Scholar
[9] Aggarwal, R. L., Maki, P. A., Molnar, R. J., Liau, Z.-L. and Melngailis, I.. Appl. Phys. Lett. 79, 2148 (1996).Google Scholar
[10] Kim, S. T., Amano, H., Akasaki, I. and Koide, N.. Appl. Phys. Lett. 64, 1535 (1994).Google Scholar
[11] Schmidt, T. J., Yang, X. H., Shan, W., Song, J. J., Salvador, A., Kim, W., Aktas, O., Botchkarev, A. and Morkoç, H.. Appl. Phys. Lett. 68, 1820 (1996).Google Scholar
[12] Redwing, J. M., Loeber, D. A. S., Anderson, N. G., Tischler, M. A. and Flynn, J. S.. Appl. Phys. Lett. 69, 1 (1996).Google Scholar
[13] Hofmann, R., Gauggel, H.-P., Griesinger, U. A., Gräbeldinger, H., Adler, F., Ernst, P., Bolay, H., Harle, V., Scholz, F., Schweizer, H. and Pilkuhn, M. H.. Appl. Phys. Lett. 69, 2068 (1996).Google Scholar
[14] Härle, V., Bolay, H., Steuber, F., Scholz, F., Syganow, V., Frankowsky, G. and Hangleiter, A.. In: Proc. Int. Symp. on Blue Lasers and Light Emitting Diodes, Chiba, Japan page 62. 1996.Google Scholar
[15] Mohammad, S. N., Salvador, A. A. and Morkoç, H.. Proceeding of the IEEE 83, 1306 (1995).Google Scholar
[16] Ejder, E.. Phys. stat. sol. (a) 6, 445 (1971).Google Scholar
[17] Kaden, C., Griesinger, U. A., Schweizer, H., Geng, C., Moser, M. and Scholz, F.. Appl. Phys. Lett. 63, 3414 (1993).Google Scholar
[18] Gauggel, H.-P., Geng, C., Schweizer, H., Barth, F., Hommel, J., Winterhoff, R. and Scholz, F.. Electron. Lett. 31, 367 (1995).Google Scholar
[19] Teisseyre, H., Perlin, P., Suski, T., Grzegory, I., Porowski, S., Jun, J., Pietraszko, A. and Moustakas, T. D.. J. Appl. Phys. 76, 2429 (1994).Google Scholar