Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-27T21:47:23.670Z Has data issue: false hasContentIssue false

Reactions of Titanium Films with thin Silicon Dioxide, Nitride, and Oxynitride Films During Rapid Thermal Annealing

Published online by Cambridge University Press:  25 February 2011

Sen-Hou Ko
Affiliation:
Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180.
N. M. Devashrajee
Affiliation:
Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180.
Shyam P. Murarka
Affiliation:
Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy NY 12180.
Pei-Jun Ding
Affiliation:
Department of Physics State University of New York at Albany, Albany, New York
William A. Lanford
Affiliation:
Department of Physics State University of New York at Albany, Albany, New York
Get access

Abstract

The interactions of Ti with SiO2, Si3N4, and SiOiNy have been studied during rapid thermal annealing at 400 to 900 °C in Ar with 3% H2 ambient. X-ray diffraction, sheet resistance measurements, RBS, nuclear reaction technique to profile hydrogen, and microscopy have been employed in this study. The results of this investigation indicate that Si3N4 and SiOxNy are more stable with Ti than SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

[1] Murarka, S. P., Slicide for VLSI Applications. Academic Press New York 1983.Google Scholar
[2] Brat, T., Osburn, C. M., Finstand, T., Liu, J., and Ellington, B., J. Electrochem. Soc, 133 1451 (1986).CrossRefGoogle Scholar
[3] Murarka, S. P., J. Vac. Sci. Tcchnol. B4 1325 (1986).CrossRefGoogle Scholar
[4] Alpcrin, M. E., Holloway, T. C., Hakcn, R. A., Gosmeyer, C. D., Karmaugh, R. V., and Parmantie, W. D., IEEE Trans, Electron Devies, ED–32 141 (1985).Google Scholar
[5] Murarka, S. P., J. Vac. Sci. Technol., 17, 775 (1980).Google Scholar
[6] Lanford, W. A., Trautvetter, H. P., Zicglcr, J. F., and Keller, J., Appl. Phys. Lett. 28 566 (1976)Google Scholar
[7] Ming, C. T., Wittmer, M., Tyer, S. S., and Brodsky, S. B., J. Electrochem. Soc. 131 2934 (1984).Google Scholar
[8] Taylor, J. A. and Dcsu, S. B., Amcr, J.. Ccrm. Soc. 72 1947 (1989).Google Scholar
[9] Morgan, A. E., Broadbent, E. K., amd Sadana, D. K., Appl. Phys. Lett., 49 1236 (1986).Google Scholar
[10] Wang, S. Q. and Mayer, J. W.. J. Appl. Phys., 67 2932 (1990).Google Scholar
[11] Beyers, R., Sinclair, R. and Thomas, M. E., J. Vac. Sci. Technol. B2 781 (1984).Google Scholar