Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T09:18:02.230Z Has data issue: false hasContentIssue false

Quantum dots of InAs/GaSb type II superlattice for infrared sensing

Published online by Cambridge University Press:  21 March 2011

M. Razeghi
Affiliation:
Northwestern University, Center for Quantum Devices, ECE Department Evanston, IL 60208
Y. Wei
Affiliation:
Northwestern University, Center for Quantum Devices, ECE Department Evanston, IL 60208
A. Gin
Affiliation:
Northwestern University, Center for Quantum Devices, ECE Department Evanston, IL 60208
G. J. Brown
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, AFRL/MLPS, Wright-Patterson AFB, OH 45433-7707
Get access

Abstract

Throughout the past years, significant progress has been made in Type II (InAs/GaSb) photovoltaic detectors in both LWIR and VLWIR ranges. BLIP performance at 60K for 16μm photovoltaic type II detectors has been successfully demonstrated for the first time. The detectors had a 50% cut-off wavelength of 18.8 μm and a peak current responsivity of 4 A/W at 80K. A peak detectivity of 4.5×1010cm·Hz1/2/W was achieved at 80K at a reverse bias of 110mV. Detectors of cutoff wavelength up to 25μm have been demonstrated at 77K. The great performance of single element detectors appeals us to lower dimensional structures for both higher temperature performance and possible wavelength tunability. Simple calculations show that quantum effects will become significant when the lateral confinement is within tens of nanometers. The variation of applied gate voltage will move the electron and hole energy levels unevenly. The cutoff wavelength of the superlattice will vary accordingly. Auger recombination will also decrease and higher temperature operation becomes possible. In this talk, the latest results will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kinch, M. A. and Yariv, A., Appl. Phys. Lett. 55, 2093, 1989.Google Scholar
2. Rogalski, A., Infrared Physics & Technology 40, 279, 1999.Google Scholar
3. Sai-Halasz, G. A., Tsu, R., and Esaki, L., Appl. Phys. Lett. 30, 651, 1971.Google Scholar
4. Mohseni, H., Michel, E., Sandven, J., Razeghi, M., Mitchel, W., and Brown, G., Appl. Phys. Lett. 71(10), 1403, 1997.Google Scholar
5. Mohseni, H., Razeghi, M., Brown, G.J., Park, Y.S., Appl. Phys. Lett., 78(15), 21072109, 2001.Google Scholar
6. Mohseni, Hooman, Wei, Yajun and Razeghi, Manijeh, Proc. SPIE, 4288, 191199, 2001.Google Scholar
7. Wei, Y., Gin, A., Razeghi, M., and Brown, G., submitted to Appl. Phys. Lett., Oct. 2001.Google Scholar
8. Mohseni, Hooman, Wojkowski, Joseph S., Tahraoui, Abbes, Razeghi, Manijeh, Brown, G., and Mitchel, W., Proc. SPIE, 3948, 153160, 2000.Google Scholar
9. Mohseni, H., Wojkowski, J., Razeghi, M., IEEE J. Of Quantum Elect. 35, 1041, 1999.Google Scholar
10. Stiff, A. D., Krishna, S., and Bhattacharya, P., Appl. Phys. Lett., 79(3), 2001.Google Scholar
11. Bastard, G., Phys. Rev. B 25, 7584 (1982).Google Scholar
12. Fuchs, F., Burkle, L., Pletschen, W., Schmitz, J., Walther, M., Gullich, H., Herres, N., and Mueller, S., Proc. SPIE 3794, 41 (1999).Google Scholar
13. Higgins, W.M., Pultz, G. N., Roy, R.G., Lancaster, R.A. and Schmit, J.L., J. Vac. Sci. Technol. A 7 (2), 271 (1989).Google Scholar
14. Johnson, J. L., Samoska, L. A., Gossard, A. C., Merz, J., Jack, M. D., Chapman, G. R., Baumgratz, B. A., Kosai, K., and Johnson, S. M., J. Appl. Phys. 80, 1116 (1996).Google Scholar
15. Fuchs, F., Weimar, U., Ahlswede, E., Pletschen, W., Schmitz, J., and Walther, M., Proc. SPIE 3287, 14 (1998).Google Scholar
16. Fuchs, F., Weimar, U., Pletschen, W., Schmitz, J., Ahlswede, E., Walther, M., Wagner, J., and Koidl, P., Appl. Phys. Lett. 71, 3251 (1997).Google Scholar
17. Burkle, L., Fuchs, F., Kiefer, R., Pletschen, W., Sah, R. E., and Schmitz, J., Mater. Res. Soc. Symp. Proc. 607, 77 (2000).Google Scholar