Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T20:04:31.686Z Has data issue: false hasContentIssue false

PTCDA Films Deposited by Ionized Beam Method

Published online by Cambridge University Press:  22 February 2011

Hiroaki Usui
Affiliation:
Department of Material Systems Engineering, Tokyo University of Agriculture and Technology, Nakamachi, Koganei, Tokyo 184, Japan
Kiyoshi Kashihara
Affiliation:
Department of Material Systems Engineering, Tokyo University of Agriculture and Technology, Nakamachi, Koganei, Tokyo 184, Japan
Kuniaki Tanaka
Affiliation:
Department of Material Systems Engineering, Tokyo University of Agriculture and Technology, Nakamachi, Koganei, Tokyo 184, Japan
Seizo Miyata
Affiliation:
Department of Material Systems Engineering, Tokyo University of Agriculture and Technology, Nakamachi, Koganei, Tokyo 184, Japan
Get access

Abstract

Thin films of 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) were deposited by an ionized beam method. The molecular orientation and chemical structure of the films were studied in connection with ionization and ion acceleration conditions. At a low ionization condition, the molecules are oriented in parallel with the substrate, and the crystallinity was improved by an appropriate ion acceleration. At higher ionization conditions, on the other hand, ion acceleration resulted in a loss of crystallinity. Deposited molecules undergo chemical change in such a condition, leading to dissociation of dianhydride groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Usui, H., Yamada, I. and Takagi, T., J. Vac. Sci. Technol. A 4, 722 (1986).Google Scholar
2 Usui, H., Naemura, M., Nakanishi, F., Yamada, I. and Takagi, T., Proc. 8th Symp. on Ion Source and Ion-Assisted Technology (The Res. Group Ion Eng., Kyoto Univ.), p. 271 (1984).Google Scholar
3 Yamada, I., Usui, H., Yamada, A. and Sugiyama, H., Nucl. Instrum. Methods B 59/60, 219 (1991).Google Scholar
4 Usui, H., Yamada, A., Murayama, K. and Yamada, I., Mat. Res. Soc. Symp. Proc. 235, 621 (1992).Google Scholar
5 Usui, H., Numata, K., Dohmoto, H., Yamada, I. and Takagi, T., Mat. Res. Soc. Symp. Proc. 108, 201 (1988).Google Scholar
6 Takagi, T., in Ionized Cluster Beam and Epitaxy (Noyes Publications, Park Ridge, NJ, 1988).Google Scholar
7 Forrest, S.R., Kaplan, M.L. and Schmidt, P.H., Ann. Rev. Mater. Sci. 17, 189 (1987).Google Scholar
8 Zimmermann, U., Schnitzler, G., Karl, N., Umbach, E. and Dudde, R., Thin Solid Films 175, 85 (1989).Google Scholar
9 Möbus, M., Schreck, M. and Karl, N., ibid. , 89.Google Scholar
10 Burrows, P.E. and Forrest, S.R., Appl. Phys. Lett. 62, 3102 (1993).Google Scholar
11 Forrest, S.R., Kaplan, M.L., Schmidt, P.H., Venkatesan, T. and Lovinger, A.J., Appl. Phys. Lett. 41, 708 (1982).Google Scholar
12 Tanaka, K., Murashima, M. and Yamabe, T., Solid State Commun. 67, 159 (1988).Google Scholar
13 Lovinger, A.J., Forrest, S.R., Kaplan, M.L., Schmidt, P.H. and Venkatesan, T., J. Appl. Phys. 55, 476 (1984).Google Scholar
14 Akers, K., Aroca, R., Hor, A-M. and Loutfy, R.O., J. Phys. Chem. 91, 2954 (1987).Google Scholar
15 Venkatesan, T., Forrest, S.R., Kaplan, M.L., Schmidt, P.H., Murray, C.A., Brown, W.L., Wilkens, B.J., Roberts, R.F., Rupp, L. Jr., and Schonhorn, H., J. Appl. Phys. 56, 2778 (1984).Google Scholar
16 Murakami, M., Synthetic Metals 18, 531 (1987).Google Scholar