Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 0.351 Render date: 2021-12-02T20:27:56.053Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Proposal of a Novel Spin Filter Realized in a Triple Barrier Resonant Tunnel Diode using Rashba Spin-Orbit Interaction

Published online by Cambridge University Press:  17 March 2011

Takaaki Koga
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, JAPAN
Junsaku Nitta
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, JAPAN
Supriyo Datta
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN47907, USA
Hideaki Takayanagi
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, JAPAN
Get access

Abstract

A spin rectifying diode, which utilizes Rashba spin-orbit coupling, is proposed using semiconducting triple barrier structures. This spin diode makes use of spin-dependent resonant tunneling levels that are formed in the triple barrier structures. We found that, for a certain emitter-collector bias voltage, it is possible to engineer the structure in such a way that a resonant l evel formed within the first quantum well matches that of the second quantum well only for a selected spin state, thus realizing an electronic spin rectifier. The calculated spin polarization of the transmitted current through the device, which is defined as I –I /(I +I ), is found to be higher than 99.9%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prinz, G. A., Physics Today, April, 58 (1995); G. A. Prinz, Science 282, 1660 (1998).Google Scholar
2. Hammar, P. R., Bennett, B. R., Yang, M. J., and Johnson, M., Phys. Rev. Lett. 83, 203 (1999).CrossRefGoogle Scholar
3. Hu, C.-M., Nitta, J., Jensen, A., Hansen, J. B., and Takayanagi, H., Phys. Rev. B 63, 12533 (2001).Google Scholar
4. Zhu, H. J., Ramsteiner, M., Kostial, H., Wassermeier, M., Schönherr, H.-P., and Ploog, K. H., Phys. Rev. Lett. 87, 16601 (2001).CrossRefGoogle Scholar
5. Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., and Molenkamp, L. W., Nature 402, 787 (1999).CrossRefGoogle Scholar
6. Ohno, Y., Young, D. K., B. Beschoten, Matsukura, F., Ohno, H., and Awschalom, D. D., Nature 402, 790 (1999).CrossRefGoogle Scholar
7. Weinmann, D., Häusler, W., and Kramer, B., Phys. Rev. Lett. 74, 984 (1995).CrossRefGoogle Scholar
8. Recher, P., Sukhorukov, E. V., and Loss, D., Phys. Rev. Lett. 85, 1962 (2000).CrossRefGoogle Scholar
9. Chitta, V. A., Maialle, M. Z., Leão, S. A., and Degani, M. H., Appl. Phys. Lett. 74, 2845 (1999).CrossRefGoogle Scholar
10. Gruber, T., Keim, M., Fiederling, R., Reuscher, G., Ossau, W., Schmidt, G., Molenkamp, L. W., and Waag, A., Appl. Phys. Lett. 78, 1101 (2001).CrossRefGoogle Scholar
11. Voskoboynikov, A., Lin, S. S., and Lee, C. P., Phys. Rev. B 59, 12514 (1999).CrossRefGoogle Scholar
12. Voskoboynikov, A., Lin, S. S., Lee, C. P., and Tretyak, O., J. Appl. Phys. 87, 387 (2000).CrossRefGoogle Scholar
13. Rashba, E. I., Sov. Phys. Solid State 2, 1109 (1960), [Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)]; Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).Google Scholar
14. Engels, G., Lange, J., Schäpers, T., and Lüth, H., Phys. Rev. B 55, R1958 (1997).CrossRefGoogle Scholar
15. Schäpers, Th., Engels, G., Lange, J., Klocke, T., Hollfelder, M., and Lüth, H., J. Appl. Phys. 83, 4324 (1998).CrossRefGoogle Scholar
16. Koga, T., Nitta, J., Takayanagi, H., and Datta, S., unpublished (2001).Google Scholar
17. Koga, T., Nitta, J., Akazaki, T., and Takayanagi, H., Jpn. J. Appl. Phys., Aprilissue (2002).Google Scholar
18. Mizuta, H. and Tanoue, T., The Physics and Application of Resonant Tunnelling Diode (Cambridge University Press, New York, 1995).CrossRefGoogle Scholar
19. Ando, Y. and Itoh, T., J. Appl. Phys. 61, 1497 (1987).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Proposal of a Novel Spin Filter Realized in a Triple Barrier Resonant Tunnel Diode using Rashba Spin-Orbit Interaction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Proposal of a Novel Spin Filter Realized in a Triple Barrier Resonant Tunnel Diode using Rashba Spin-Orbit Interaction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Proposal of a Novel Spin Filter Realized in a Triple Barrier Resonant Tunnel Diode using Rashba Spin-Orbit Interaction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *