Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T09:25:25.778Z Has data issue: false hasContentIssue false

Propagation of Dislocations Through GeSi/Si Strained Layers and Superlattices

Published online by Cambridge University Press:  28 February 2011

R. Hull
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J.C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R.E. Leibenguth
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We describe in-situ transmission electron microscope observations of the relaxation of strained layer GeSi/Si epitaxy. Dynamic observations of misfit dislocations in these structures reveal that dislocation nucleation and growth activation barriers, as well as interactions, limit the rate at which strain is relieved. The equivalence of threading and misfit dislocations in this system is demonstrated. Extension of the principles learnt from these single layer experiments to threading dislocation propagation through multilayer structures, enables us to understand the relative inefficiency of GeSi/Si strained layer superlattices in blocking threading dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Bean, J.C., in Proceedings of the Materials Research Society, edited by Gibson, J.M. and Dawson, L.R. (Materials Research Society, Piitsburgh, PA, 1985), Vol. 37, p. 245 Google Scholar
(2) Merwe, J.H. Van der and Ball, C.A.B. in Epitaxial Growth, Part b, edited by Matthews, J.W. (Academic, New York, 1975), pp. 193528 Warrendale, PA), p. 505Google Scholar
(3) Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974); 32, 265 (1974)Google Scholar
(4) Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1987); J.Y. Tsao, B.W. Dodson, S.T. Picreaux and D.M. Cornelison, Phys. Rev. Lett. 59, 2455 (1987)CrossRefGoogle Scholar
(5) Hull, R., Bean, J.C., Werder, D.J. and Leibenguth, R.E., Appl. Phys. Lett., 52, 1605 (1988)CrossRefGoogle Scholar
(6) Kwam, E.P., Eaglesham, D.J., Maher, D.M., Humphreys, C.J., Bean, J.C., Green, G.S. and Tanner, B.K., to be published in Proc. Mat. Res. Soc. 104, ed. Tung, R.T., Dawson, L.R. and Gunshor, R.L., (Materials Research, Pittsburgh, PA)Google Scholar
(7) Hull, R., Bean, J.C. and Werder, D.J., submitted to Phys. Rev. Lett.Google Scholar
(8) Alexander, H. and Haasen, P. in Solid State Physics, Vol. 22 (1968)Google Scholar
(9) Patel, J.R. and Chaudhuri, A.R., Phys. Rev. 143 (601), 1966 CrossRefGoogle Scholar
(10) Hagen, W. and Strunk, H., Appl. Phys. 17, 85 (1978)CrossRefGoogle Scholar
(11) Hull, R. and Bean, J.C., to be publishedGoogle Scholar
(12) See Hirth, J.P. and Lothe, J., “Theory of Dislocations” (McGraw-Hill, New York, 1968), pp. 687690 for a discussion of nucleation of glissile vacancy loops.Google Scholar
(13) Olsen, G.H., Abrahams, M.S., Buiocchi, G.J. and Zamerowski, T.J., J. Appl. Phys. 46, 1643 (1975)CrossRefGoogle Scholar
(14) Fischer, R., Morkoc, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erickson, L.P., J. Appl. Phys. 60, 1640 (1986)CrossRefGoogle Scholar
(15) Lilliental, Z.-Weber, Weber, E.R., Washburn, J., Liu, T.Y. and Kroemer, H. in “Heteroepitaxy on Si 11”, Proc. Mat. Res. Soc. 91, ed. Fan, I.C.C., Phillips, J.M. and Tsaur, B.-Y. (Materials Research Society, Pittsburgh, PA, 1987), p. 91 Google Scholar
(16) Hull, R., Bean, J.C., Cerdeira, F., Fiory, A.T. and Gibson, J.M., Appl. Phys. Lett. 48, 56 (1986)CrossRefGoogle Scholar
(17) Hull, R., Bean, J.C., Werder, D.J. and Leibenguth, R.E., to be publishedGoogle Scholar