Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-27T17:52:41.498Z Has data issue: false hasContentIssue false

Preparation of Niobium Oxides Cathodes by Chimie Douce and Some Electrochemical Properties

Published online by Cambridge University Press:  10 February 2011

A. Hernandez
Affiliation:
Facultad de Ciencias Químicas, División de Estudios Superiores, Universidad Autónoma de Nuevo León, Apartado Postal 1864, Monterrey, NL 64570, México
E. Sanchez
Affiliation:
Facultad de Ciencias Químicas, División de Estudios Superiores, Universidad Autónoma de Nuevo León, Apartado Postal 1864, Monterrey, NL 64570, México
L. C. Torres-Gonzalez
Affiliation:
Facultad de Ciencias Químicas, División de Estudios Superiores, Universidad Autónoma de Nuevo León, Apartado Postal 1864, Monterrey, NL 64570, México
A. F. Fuentes
Affiliation:
Facultad de Ciencias Químicas, División de Estudios Superiores, Universidad Autónoma de Nuevo León, Apartado Postal 1864, Monterrey, NL 64570, México
L. M. Torres-Martinez
Affiliation:
Facultad de Ciencias Químicas, División de Estudios Superiores, Universidad Autónoma de Nuevo León, Apartado Postal 1864, Monterrey, NL 64570, México
Get access

Abstract

Sol gel chemistry has been a useful technique to achieve hard-to-prepare metastable materials. Niobium oxide, for instance has a thermodynamic preference to crystallize on monocyclic lattice. Here, we were able to achieve synthesis of orthorhombic motif with a careful sol-gel preparation and tailored thermal treatment. Furthermore, formation of lithium inserted Nb205 phases were studied by electrochemical methods. When lithium is inserted, several single phases LixNb205 were observed in the range of 0 ≤ x ≤ 3.3 between 3.0 and 0.75 V. Even though the reaction is only reversible for x ≤ 1.8. Also, T-Nb205 polymorph showed improved intercalation characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Whitesides, G. M., Angew. Chem. 29 (1990) 1209 Google Scholar
[2] Sun, Y. K., Jin, S-H., J. Mat. Chem. 8 (1998) 2399 Google Scholar
[3] Peng, Z. S., Wan, C. R., Jiang, C. Y., J. Power Sources 72 (1998) 215 Google Scholar
[4] Choi, Y. M., Dyon, S. J., Hyung, Y. E. J. Power Sources 72 (1998) 215 Google Scholar
[5] Cava, R. J., Murphy, D. W., Zahurak, S. M., J.Electrochem. Soc. 130 (1983) 2345 Google Scholar
[6] Marinder, B. O., Chemica Scripta, 26 (1986) 547 Google Scholar
[7] Kato, K., Tamura, S., Acta Crystallogr. B31 (1975) 673 Google Scholar
[8] Tamura, S., Z. Anorg. Allg. Chem. 410 (1974) 313 Google Scholar
[9] Li, P., Kangasniemi, I., Groot, K. de, J. Non-Crystalline Solids 168 (1994) 281 Google Scholar
[10] Tarascon, J. M., J. Electrochem. Soc. 132 (1985) 2089 Google Scholar
[11] Mouget, C. and Chabre, Y., Multichannel Potentiostat Galvanostat MacPile, Licenced from CNRS and UJF Grenoble to Bio-Logic Corp., 1 Ave. de l'Europe, F-38640, Claix, France.Google Scholar
[12] Weppner, W. and Huggins, R. A., J. Electrochem Soc. 139 (1992) 937 Google Scholar
[13] Yashima, M., Lee, J. H., Yoshimura, M., J. Phys. Chem. Solids, 58 (1997) 1593 Google Scholar