Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T11:24:33.638Z Has data issue: false hasContentIssue false

The Possible Mechanism of Excitation of the f - f Emission from Er-O Clusters in Silicon

Published online by Cambridge University Press:  10 February 2011

V. F. Masterov
Affiliation:
Department of Experimental Physics, St.Petersburg State Technical University, St.Petersburg 195251, Russia, masterov@tuexph.spb.su
L. G. Gerchikov
Affiliation:
Department of Experimental Physics, St.Petersburg State Technical University, St.Petersburg 195251, Russia, masterov@tuexph.spb.su
Get access

Abstract

The Er2O3 quantum dot (cluster) with dimensions about 1.2nm in silicon is discussed as the possible source of the Er related emission in Si:Er,O, excited by photogenerated carriers or in a light-emitting diodes (LED) at forward bias. This quantum dot is represented as a spherical quantum well 0.9eV in depth. The electron level with energy about 0.15eV below the bottom of the silicon conduction band plays role of an electron trap. The trapped electron interacts with a hole in valence band of silicon forming “indirect” exciton bonded to quantum well. The energy is transferred to f - shell of erbium by the Auger electron - hole recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adler, D.L., Jacobson, D.C., Marcus, M.A., Benton, J.L., Poate, J.M., Citrin, P.H., Appl.Phys.Lett, 61, p. 2181 (1992).Google Scholar
2. Phillips, J.C., J. Appl.Phys., 76, p.5896 (1994).Google Scholar
3. Samokhvalov, A.A. in Rare-Earth Semiconductors, edited by Zhuze, V.P. and Smirnov, I.A., (Leningrad, Russia 1977), p.547 (in Russian).Google Scholar
4. Vasil'ev, A.E., II'in, N.P., Masterov, V.F., Sov.Phys.-Semicond. 22, p. 1253 (1988).Google Scholar
5. Moon, R.M., Koehler, W.C., Child, H.R., and Raubenheimer, I.J., Phys.Rev.,176, p.722 (1968)Google Scholar
6. Luttinger, J.M., Phys.Rev. 102, p. 1030 (1956).Google Scholar
7. Gel'mont, B.L., D'yakonov, M.I., ZhTEF 62, p.713 (1972) (in Russian).Google Scholar
8. Yassievich, I.N., Kimerling, L.C., Semicond.Sci.Technol. 8, p. 718 (1993).Google Scholar
9. Kane, E.O., Semiconductors and Semimetals, Acad.Press Inc., 1, p. 75 (1966).Google Scholar
10. Uwai, K., Nakagome, H., Takahei, K., Appl.Phys.Lett. 50, p. 977 (1987).Google Scholar
11. Ennen, H., Wagner, J., Muller, H.D., and Smith, R.S., J.Appl.Phys. 61, p. 9877 (1987).Google Scholar
12. Ohtsuki, T., Peyghambarian, N., Honkanen, S., Najafi, S.I., J.Appl.Phys. 78, p. 3617 (1995).Google Scholar
13. Priolo, F., Franzo, G., Coffa, S., Polman, A., Libertino, S., Barklie, R., Carey, D., J. AppI.Phys. 78, p. 3874 (1995).Google Scholar
14. Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C., Poate, J.M., Appl.Phys.Lett. 64, p.2842 (1994).Google Scholar
15. Custer, J.S., Polman, A., van Pinxteren, H.M., J.Appl.Phys. 75, p. 2809 (1994).Google Scholar
16. Serna, R., Shoeks, E., van den Hoven, G.N., Polman, A., J.Appl.Phys. 75, p. 2644 (1994).Google Scholar
17. van den Hoven, G.N., Shin, Jung H., Polman, A., Lombardo, S., Camprisano, S.U., J.Appl.Phys. 78, p.2642 (1995).Google Scholar