Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-11T14:32:55.275Z Has data issue: false hasContentIssue false

The Polyelectrolyte Brush: Poor Solvent

Published online by Cambridge University Press:  25 February 2011

Richard S. Ross
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106
Phil Pincus
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106 Materials Department, University of California, Santa Barbara, CA 93106
Get access

Abstract

We investigate the end grafted polyelectrolyte brush in the poor solvent regime of the corresponding neutral polymer system. Using Poisson-Boltzmann theory for the electrostatics and Flory-Huggins-mean-field theory for the excluded volume and Van-der-Waals-like monomer interactions, we find the existence of a first order phase transition to a collapsed state for moderate to highly charged polyelectrolytes in the poor solvent regime. Irreversibilities in the disjoining pressure between planar grafted surfaces are predicted. For polyelectrolytes grafted to spherical and cylindrical surfaces with small radii of curvature, the phase transition is predicted to become second order in the infinite molecular weight limit. A phase diagram for the entire poor solvent regime is given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, R. M. and Russel, W.B., J. Polymer Sci. B24, 511, (1986).Google Scholar
2. Joanny, J. F. and Leibler, L., J. Phys. Paris 151, 545, (1990).Google Scholar
3. Miklavic, S. J. and Mareelja, S., J. Phys. Chem. 92, 6718, (1988).CrossRefGoogle Scholar
4. Misra, S., Varanasi, S., and Varanasi, P. P., Macromolecules 22, 4173, (1989).CrossRefGoogle Scholar
5. Pincus, P., Macromolecules 24, 2912, (1991).CrossRefGoogle Scholar
6. Tanaka, T., Fillmore, D., Sun, S., Nishio, I., Swislow, G. and Shah, A., Phys. Rev. Lett. 45, 1636, (1980).CrossRefGoogle Scholar
7. Ohmine, I. and Tanaka, T., J. Chem. Phys. 77, 5725, (1982).CrossRefGoogle Scholar
8. Alexander, S., J. Phys. Paris 38, 983, (1977).Google Scholar
9. Gennes, P. G. de, Macromolecules 13, 1069, (1980).Google Scholar
10. Milner, S. T., Witten, T. A., Cates, M. E., Europhys. Lett. 5, 413, (1989).CrossRefGoogle Scholar
11. Milner, S. T., Witten, T. A., Gates, M. E., Macromolecules 21, 2610, (1988).CrossRefGoogle Scholar
12. Skovortsov, A. M., Pavlushkov, I. V., Gortimov, A. A.. Zhulina, E. B., Borisov, O. V., Pryamitsyn, V. A., Vysokomol. Soedin A30, 1615, (1988).Google Scholar
13. Hirz, S. J., “Modeling of Interactions Between Adsorbed Block Copolymers” Masters Thesis,Univ. of Minn., Minneapolis, 1986.Google Scholar
14. Borisov, O. V., Birshtein, T. M., Zhulina, E. B., J. Phys. II 1, 521, (1991).Google Scholar
15. Halperin, A., J. Phys. Paris 49, 547, (1988).Google Scholar
16. Zhulina, E. B., Borisov, O.V., Pryamitsyn, V. A., Birshtein, T. M., Macromolecules 24, 140, (1991).Google Scholar
17. Borisov, O. V., Zhulina, Ye. B. and Birshtein, T. M. Polymer Science U.S.S.R. 30, 772, (1988).CrossRefGoogle Scholar
18. Klein, J. and Luckham, P. F. Macromolecules 17, 1041, (1984).CrossRefGoogle Scholar
19. Luckham, P. F. and Klein, J. J. Chem. Soc.; Faraday Trans. 1 80, 865, (1984).CrossRefGoogle Scholar
20. Klein, J. and Luckham, P. F. Colloids and Surf. 10, 65, (1984).CrossRefGoogle Scholar
21. Argillier, J.-F. and Tirrell, M. private communication.Google Scholar