Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T04:49:44.994Z Has data issue: false hasContentIssue false

Poly(3′,4′-Dibutyl-α-Terthiophene-Phenylene-Vinylene), and Poly(3′,4′-Dibutyla-α-Terthiophene-Phenylene-Imine): Synthesis and Properties of Two New Isoelectronic Soluble Conjugated Polymers.

Published online by Cambridge University Press:  10 February 2011

Chenggang Wang
Affiliation:
Department of Chemistry and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Xusheng Xie
Affiliation:
Department of Chemistry and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Eugene LeGoff
Affiliation:
Department of Chemistry and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Get access

Abstract

A new soluble and dopable copolymer consisting of 3,4-dibutyl-2,2:5,2”-terthiophene and phenylene vinylene units has been designed and prepared via a Wittig reaction. This copolymer is soluble in common organic solvents such as THF and CHC13, and can be doped with various oxidants increasing its electrical conductivity by several orders of magnitude. Its films are electrochromic and turn reversibly and rapidly from red to green-blue upon doping and undoping electrochemically. If the phenylene vinylene units are replaced with phenylene imine units, another interesting new polymer forms which is not readily dopable with the same oxidants but is dopable with acids. The new material exhibits strong chemochromism with dramatic shifts in its optical absorption spectra. In the undoped state both copolymers show strong photoluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Roncali, , J. Chem. Rev. 1992, 92, 711738 and references therein. (b) Bredas, J. L; Chance, R. R., Eds. Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics; Kluwer Academic Publishers: Dordrecht, 1990. (c) Kanatzidis, M, G. Chem. & Engin. News 1990, 68, 36.Google Scholar
2. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B.Nature, 1990, 347, 539541.Google Scholar
3. (a) Burn, P. L.; Holmes, A. B.; Kraft, A.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H. J. Chem. Soc., Chem. Commun. 1990, 32. (b) Zhang, C.; Braun, D.; Heeger, A. J. J. Appl. Phys., 1993, 73, 5177–5180.Google Scholar
4. Seggern, H. V.; Schmidt-Winkel, P.; Zhang, C.; Pakbaz, K.; Kraabel, B.; Heeger, A. J.; Schmidt, H.-W. Polymer Preprints, 1993, 34(2), 532533.Google Scholar
5. (a) Burn, P. L.; Holmes, A. B.; Kraft, A.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Gymer, R. W. Nature 1992, 356, 47 and references therein. (b) Malliaras, G. G.; Herrema, J. K.; Wildeman, J.; Wieringa, R. H.; Gill, R. E.; Lampoura, S.; Hadziioannou, G. Adv. Mater. 1993, 5, 721–723.Google Scholar
6. March, J., Ed. Advanced Organic Chemistry 3rd, John, Wiley & Sons: New York, 1985; 845854 and references therein.Google Scholar
7. (a) Jen, K.-Y.; Cava, M. P.; Huang, W. S.; MacDiarmid, A. G. J. Chem. Soc., Chem. Commun. 1983, 15021503. (b) Huang, W. S.; Jen, K.-Y.; Angelopoulos, M.; MacDiarmid, A. G.; Cava, M. P. Mol. Cryst. Liq. Cryst., 1990 189, 237–254.Google Scholar
8. (a) Hay, M. F.; Yang, Y.; Klavetter, F. L. Polymer Preprints 1994, 35(1), 293294. (b) Yang, Z.; Sokolik, I.; Karasz, F. E. Macromolecules, 1993, 26, 1188–1190.Google Scholar
9. (a) Wang, C.; Benz, M. E.; LeGoff, E.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. G. Polymer Preprints 1993, 34(2), 422423. (b) Wang, C.; Benz, M. E.; LeGoff, E.; Schindler, J. L.; Allbritton- Thomas, J.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1994, 6, 401–411.Google Scholar
10. (a) Wang, C.; Shieh, S.; LeGoff, E.; Albritton-Thomas, J.; Kannewurf, C. R.; Kanatzidis, M. G. Synth. Met. 1995, in press. (b) Wang, C.; Shieh, S.; LeGoff, E.; Kanatzidis, M. G. submitted.Google Scholar
11. D'Alelio, G. F.; Schoenig, R. K.; J. Macromnol. Sci. Rev.: Macromool. Chem. 1969, Ca, 105234.Google Scholar
12. (a) Morgan, P. W.; Kwolek, S. L.; Pletcher, T. C. Macromolecules 1987, 20, 729739. (b) Millaud, B.; Thierry, A.; Skoulios, A. Mol. Cryst. Lid. Cryst. Lett. 1978, 41, 263. (c) Jenekhe, S. A.; Yang, C.-J.; Vanherzeele, H.; Meth, J. S. Chem. Mater.1991, 3, 987–989. (d) Barbarin, F.; Blance, J. P.; Dugay, M.; Fabre, C.; Maleysson, C. Synth. Met. 1984/85, 10, 71–78. (b) Li, X.; Li, C.; Li, S. Synth. Met. 1993, 6Q, 285–288. (e) Jenekhe, S. A.; Yang, C.-J. Chem. Mater. 1991, 3, 878–887. (b) Yang, C.- J.; Jenekhe, S. A. Chem. Mater. 1994, 6, 196–203.Google Scholar
13. Wang, C.; Shieh, S.; LeGoff, E.; Kanatzidis, M. G. submittedGoogle Scholar
14. (a) Socrates, G. Infrared Characteristic Group Frequencies; John Willey & Sons: New York, 1994. (b) Ward, B.; Chang, C. K.; Young, R..1. Am. Chem. Soc. 1984, 106, 3943–3950. (c) Hanson, L. K.; Chang, C. K.; Ward, B.; Callahan, P. M.; Babcock, G. T.; Head, J. J. Am. Chem. Soc. 1984, 106. 3950- 3958.Google Scholar
15. (a) Ward, B.; Chang, C. K.; Young, R. J. Am. Chem. Soc. 1984, 106, 39433950. (b) Hanson, L. K.; Chang, C. K.; Ward, B.; Callahan, P. M.; Babcock, G. T.; Head, J. J. Am. Chem. Soc. 1984, 106, 3950–3958.Google Scholar