Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T01:40:44.668Z Has data issue: false hasContentIssue false

Piezoelectric PVDF Materials Performance and Operation Limits in Space Environments

Published online by Cambridge University Press:  01 February 2011

Mathew C. Celina
Affiliation:
Organic Materials Dept. 1811, Sandia National Laboratories, Albuquerque, NM, 87185–1411, U.S.A.
Tim R. Dargaville
Affiliation:
Organic Materials Dept. 1811, Sandia National Laboratories, Albuquerque, NM, 87185–1411, U.S.A.
Pavel M. Chaplya
Affiliation:
Organic Materials Dept. 1811, Sandia National Laboratories, Albuquerque, NM, 87185–1411, U.S.A.
Roger L. Clough
Affiliation:
Organic Materials Dept. 1811, Sandia National Laboratories, Albuquerque, NM, 87185–1411, U.S.A.
Get access

Abstract

Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, λ-, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using λ- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Martin, J. W., Redmond, J. M., Barney, P. S., Henson, T. D., Wehlburg, J. C., Main, J. A., J. Int. Mater. Smart Struct. 11, 744757 (2000).Google Scholar
2. George, P. E., Dursch, H. W., J. Adv. Mater. April, 1019 (1994).Google Scholar
3. Young, P.R., Siochi, E. J., Slemp, W. S., Polym. Preprints, 35(2), 916917 (1994).Google Scholar
4. Young, P., Siochi, E. J., Slemp, W. S., in “Irradiation of Polymers,” ed. Clough, R., Shalaby, S. W., ACS Books, Washington DC, 264–192 (1996).Google Scholar
5. Dever, J. A., De Groh, K. K., Banks, B. A., Townsend, J. A., High Perf. Polym., 11, 123140 (1999).Google Scholar
6. Dever, J. A., De Groh, K. K., Banks, B. A., Townsend, J. A., Barth, J. L., Thomson, S., Gregory, T., Savage, W., High Perf. Polym., 12, 125139 (2000).Google Scholar
7. Banks, B. A., in “Modern Fluoropolymers,” ed. Scheirs, J., John Wiley & Sons, Brisbane, Chap. 4, (1997).Google Scholar
8. Clough, R. L., Gillen, K. T., Dole, M., in “Irradiation Effects on Polymers,” ed. Clegg, D. W., Collyer, A. A., Elsevier, London, 79156 (1991).Google Scholar
9. Dever, J. A., Bruckner, J., Rodriquez, E., NASA Tech. Memo. (NASA-TM-105363) (1992).Google Scholar
10. Dursch, H. W., Pippin, H. G., in Materials Degradation in Low Earth Orbit (LEO), ed. Srinivasan, V., Banks, B., The Minerals, Metals & Materials Society, 207218 (1990).Google Scholar
11. Hansen, P. A., Townsend, J. A., Yoshikawa, Y., Castro, J. D., Triolo, J. J., Peters, W. C., 43rd International SAMPE Symposium, 570581 (1998).Google Scholar
12. James, B. F., Norton, O. W., Alexander, M. B., NASA Ref. Pub. 1350, November, (1994).Google Scholar
13. Silverman, E. M., NASA Contractor Report 4661, URL: http://see.msfc.nasa.gov/mp/NASA-95-cr4661pt1.pdf, [cited 16 March 2004].Google Scholar
14. “SUSIM: An NRL Program to Measure Solar Ultraviolet Irradiance,” URL: http://wwwsolar.nrl.navy.mil/susim.html [cited 16 March 2004].Google Scholar
15. Floyd, L. E., Cook, J. W., Herring, L. C., Crane, P. C., Adv. Space Research, 31, 21112120 (2003).Google Scholar
16. Lyons, B. J., Rad. Phys. Chem., 45(2), 159174 (1995).Google Scholar
17. Forsythe, J. S., Hill, D. J. T., Prog. Polym. Sci., 25, 101136 (2000).Google Scholar
18. Kepler, G. R., Anderson, R. A., in CRC Critical Reviews in Solid State and Materials Science, Nov, 399447 (1980).Google Scholar
19. Wang, T. T., Ferroelectrics, 41, 213223 (1982).Google Scholar
20. Dargaville, T. R., Celina, M. C., Chaplya, P. M., J. Polym. Sci. B: Polym. Phys., submitted.Google Scholar
21. Simpson, J., Ounaies, Z., Fay, C., Materials for Smart Systems II. Symposium, Dec., Boston, MA, USA (1996).Google Scholar
22. Nalwa, H. S., Ferroelectric polymers: chemistry, physics, and applications, M. Dekker Inc., New York, (1995).Google Scholar
23. Vinogradov, A., Holloway, F., Ferroelectrics, 226, 169181 (1999).Google Scholar
24. Bar-Cohen, Y., Sherrit, S., Shyh-Shiuh, L., Proc. SPIE - Int. Soc. Opt. Eng., 4329, 319327 (2001).Google Scholar