Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-31T21:15:51.489Z Has data issue: false hasContentIssue false

Photothermally Assisted Dry Etching Of GaN

Published online by Cambridge University Press:  15 February 2011

R. T. Leonard
Affiliation:
Department of Materials Science and Engineering North Carolina State University
S. M. Bedair
Affiliation:
Department of Electrical and Computer Engineering North Carolina State University
Get access

Abstract

Photoassisted dry etching of GaN in HC1 by 193 nm ArF excimer laser is developed as apotential alternative process to eliminate the ion damage and surface roughness which occur inetching techniques that involve an energetic ion beam impinging the surface. A directed stream ofHC1 etchant with background pressure of ∼ 5 × 10−4 Torr, sample surface temperature between 200 to 400°C, and laser fluence of 10 to 20 mJ/ pulse combine to produce etching. The photoassistedetching reaction under these process conditions is thermal in nature, with activation energy near 1.2kcal/ mol. Increases in laser fluence results in increase of etch rate, but the surface also becomesrougher. Distinct etch features can be produced with smooth surfaces at expense of etch rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S. J., Ren, F., Fullowan, T. R., Katz, A., Hobson, W. S., Chakrabarti, U. K., and Abernathy, C. R., Mater. Chem. Phys. 32, 215 (1992).Google Scholar
2. Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H., and Morkoq, H., Appl. Phys. Lett. 64, 887 (1994)Google Scholar
3. Pearton, S. J., Mater. Sci. Eng. B27, 61 (1994).Google Scholar
4. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
5. Ping, A. T., Youtsey, C., and Adesida, I., J. Electron. Mater. 24, 229 (1995).Google Scholar
6. Ping, A. T., Adesida, I., and Khan, M. Asif, Appl. Phys. Lett. 67, 1250 (1995).Google Scholar
7. Heinbach, M., Kaindl, J., and Franz, G., Appl. Phys. Lett. 67, 2034 (1995).Google Scholar
8. Pearton, S. J., Lee, J. W., MacKenzie, J. D., and Abernathy, C. R., Appl. Phys. Lett. 67, 2329 (1995).Google Scholar
9. Pearton, S. J., Vartuli, C. B., Shul, R. J., and Zolper, J. C., Mater. Sci. Eng. B31, 309 (1995).Google Scholar
10. King, S. W., Smith, L. L., Barnack, J. P., Ku, J. H., Christman, J. A., Benjamin, M. C., Bremser, M. D., Nemanich, R. J., and Davis, R. F., to be published in Fall 1995 MRS Proceedings.Google Scholar
11. Minsky, M. S., White, M., and Hu, E. L., Appl. Phys. Lett. 68, 1531 (1996).Google Scholar
12. Leonard, R. T. and Bedair, S. M., Appl. Phys. Lett. 68,794 (1996).Google Scholar
13. Boutros, K. S., McIntosh, F. G., Roberts, J. C., Bedair, S. M., Piner, E. L., and El-Masry, N. A., Appl. Phys. Lett. 68, 1856 (1996).Google Scholar
14. Bedair, S. M. and Smith, H. P. Jr., J. Appl. Phys. 40, 4776 (1969).Google Scholar
15. Tanaka, H., Shimokawa, F., Sasaki, T., and Matsuoka, T., OPTOELECTRONICS-Devices and Technologies 6, 150 (1991).Google Scholar
16. Brewer, P., Halle, S., and Osgood, R. M. Jr., Appl. Phys. Lett. 45,475 (1984).Google Scholar
17. Tejedor, P. and Briones, F., Mat. Res. Soc. Symp. Proc. 201, (1991).Google Scholar