Hostname: page-component-76dd75c94c-8c549 Total loading time: 0 Render date: 2024-04-30T09:52:44.585Z Has data issue: false hasContentIssue false

Photoreflectance Study of Modulation-Doped GaAs/GaAlAs Quantum Dots Fabricated by Reactive-Ion Etching

Published online by Cambridge University Press:  22 February 2011

P.D. Wang
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12-8QQ, Scotland
C.M. Sotomayor Torres
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12-8QQ, Scotland Royal Society of Edinburgh Research Fellow
M.C. Holland
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12-8QQ, Scotland
H. Qiang
Affiliation:
Physics Dept., Brooklyn College of CUNY, Brooklyn, NY, 11210, USA
F.H. Pollak
Affiliation:
Physics Dept., Brooklyn College of CUNY, Brooklyn, NY, 11210, USA
G. Gumbs
Affiliation:
Physics Dept., Hunter College of CUNY, New York, NY, 10021, USA
Get access

Abstract

Using contactless photoreflectance at 300K and 77K we have investigated the intersubband transitions from two modulation-doped GaAs/GaAlAs quantum dot (QD) arrays fabricated by reactive-ion etching (RIE). The samples consisted of 8 nm decoupled GaAs/GaAlAs quantum wells with dot sizes (lateral dimensions) of 60 and 100 nm. The lineshapes of the “IC-IH” and “IC-IL” features were indicative of a screened exciton, i.e., the derivative of a broadened twodimensional density of states (step function), due to the presence of the electron gas. On the other hand, even at 300K the “2C-2H“ features exhibited a well-defined sharp excitonic lineshape, i.e., derivative of a Gaussian profile. Even at room temperature it is possible to detect the effects of the lateral quantum confinement. We have observed a 2 meV blue shift of the “2C-2H” feature of the 60 nm QD array in relation to the 100 nm QD array. At 77K we have found evidence for a “parabolic-like” in-plane confining potential on the smaller QD array. This experiment demonstrates the considerable utility of PR in studying these reduced dimensional systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heitmann, D. and Kotthaus, J.P., Physics Today, Vol.46, No. 6, p.56, June 1993; D. Heitmann, T. Demel, P. Grambow, M. Kohl and K. Ploog, Proc. 20th Int. Conf. Physics of Semiconductors.. Thessaloniki, 1990, ed. E.M. Anastassakis and J.D. Joannopoulos (World Scientific, Singapore, 1990) p. 13.CrossRefGoogle Scholar
2. Weisbuch, C. and Vintner, B., Ouantum Semiconductor Structures: Fundamentals and Applications (Academic, New York, 1991).Google Scholar
3. Kapon, E., Huang, D.M. and Bhat, R., Phys. Rev. Lett. 63, 430 (1989).CrossRefGoogle Scholar
4. Benistry, H., Torres, C.M. Sotomayor and Weisbuch, C., Phys. Rev. B42, 8947 (1991).Google Scholar
5. Benistry, H., in Plonons in Semiconductor Nanostructures, eds LeBurton, J-P., Pascual, J. and Torres, C.M. Sotomayor (Kluwer, Dordrecht, 1993) p. 447.CrossRefGoogle Scholar
6. Wang, P.D. and Torres, C.M. Sotomayor, J. Appl. Phys. 74, 5047 (1993).CrossRefGoogle Scholar
7. Kastner, M.A., Physics Today, Vol. 46, No. 1, p. 24, Jan. 1993.CrossRefGoogle Scholar
8. Torres, C.M. Sotomayor, Smart, A.P., Foad, M.A. and Wilkinson, C.D.W., Festkörperprobleme/Advances in Solid State Physics, Vol. 32, ed. Rössler, U. (Viewig, Braunschweig/Weisbaden, 1992) p. 265.Google Scholar
9. Cheung, R., Thoms, S., Watt, M., Foad, M.A., Torres, C.M. Sotomayor, Wilkinson, C.D.W., Cox, U.J., Cowley, R.A., Dunscombe, C. and Williams, R. H., Sernicond. Sci. Technol. 7, 1189 (1992).Google Scholar
10. Pollak, F. H. and Shen, H., Materials Science and Engineering R:Reports R10, 375(1993).Google Scholar
11. Glembocki, O. J. and Shanabrook, B. V., Semiconductors and Semimetals, Vol. 67, ed. Seiler, D.G. and Littler, C.L. (Academic, New York, 1992) p. 222.Google Scholar
12. Tang, Y-S., Wilkinson, C.D.W., Torres, C.M. Sotomayor, Smith, D.W., Whall, T.E. and Parker, E.H.C., Superlattices and Microstuctures 12, 535 (1992); also, Solid State Comm. 85, 199 (1993).CrossRefGoogle Scholar
13. Qiang, H., Pollak, F. H., Tang, Y., Wang, P.D., and Torres, C.M. Sotomayor, submitted to Appl. Phys. Lett.Google Scholar
14. Mei, G., Carpenter, S., Felton, L.E. and Persans, P.D., J. Opt. Soc. Am. B9, 1394(1992); P.D. Persans, M. Silvestri, G. Mei, E. Lu, H. Yuselici and J. Schroeder, Brazilian J. Phys. 23, 144 (1993); F. Hache, D. Ricard and C. Flytzanis, Appl. Phys. Lett. 55, 1504 (1989).CrossRefGoogle Scholar
15. Yin, Y., Qiang, H., Pollak, F.H., Streit, D.C. and Wojtowicz, M., Appl. Phys. Lett. 61, 1579(1992); Y. Yin, H. Qiang, D.Yan, F.H. Pollak and T.F. Noble, Semicon. Sci. Technol. 8, 1599(1993).CrossRefGoogle Scholar