Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-x9ds4 Total loading time: 0.358 Render date: 2023-02-03T14:38:33.003Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Photonic Crystals: Shaping the Flow of Thermal Radiation

Published online by Cambridge University Press:  31 January 2011

Ivan Čelanović
Affiliation:
ivanc@mit.edu, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Michael Ghebrebrhan
Affiliation:
mghebre@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Yi Xiang Yeng
Affiliation:
yxyeng@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
John Kassakian
Affiliation:
jgk@mit.edu, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Marin Soljačić
Affiliation:
soljacic@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
John Joannopoulos
Affiliation:
joannop@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Get access

Abstract

In this paper we explore theory, design, and fabrication of photonic crystal (PhC) based selective thermal emitters. In particular, we focus on tailoring spectral and spatial properties by means of resonant enhancement in PhC's. Firstly, we explore narrow-band resonant thermal emission in photonic crystals exhibiting strong spectral and directional selectivity. We demonstrate two interesting designs based on resonant Q-matching: a vertical cavity enhanced resonant thermal emitter and 2D silicon PhC slab Fano-resonance based thermal emitter. Secondly, we examine the design of 2D tungsten PhC as a broad-band selective emitter. Indeed, based on the resonant cavity coupled resonant modes we demonstrate a highly selective, highly-spectrally efficient thermal emitter. We show that an emitter with a photonic cut-off anywhere from 1.8 μm to 2.5 μm can be designed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovitch, E. Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
2 John, S. Phys. Rev. Lett. 58, 2486 (1987).CrossRefGoogle Scholar
3 Greffet, J. J. Carminati, R. Joulain, K. Mulet, J. P. Mainguy, S. and Chen, Y., Nature (London) 416, 61, 2002.CrossRefGoogle Scholar
4 Pralle, M. U. Moelders, N. McNeal, M. P. Puscasu, I. Greenwald, A. C. Daly, J. T. Johnson, E. A., George, T. Choi, D. S. El-Kady, I., and Biswas, R. Appl. Phys. Lett. 81, 4685 (2002).CrossRefGoogle Scholar
5 Celanovic, I. Perreault, D. and Kassakian, J. Phys. Rev. B 72, 075127 (2005).CrossRefGoogle Scholar
6 Chan, D. L. C. Celanovic, I. Joannopoulos, J. D. and Soljaéiæ, M., Phys. Rev. A 74, 064901 (2006).CrossRefGoogle Scholar
7 Cornelius, C. M. and Dowling, J. P. Phys. Rev. A 59, 4736 (1999).CrossRefGoogle Scholar
8 Heinzel, A. Boerner, V. Gombert, A. Blasi, B. Wittwer, V. and Luther, J. J. Mod. Opt. 47, 2399 (2000).CrossRefGoogle Scholar
9 Sai, H. Kanamori, Y. and Yugami, H. Appl. Phys. Lett. 82, 1685 (2003).CrossRefGoogle Scholar
10 Fleming, J. G. Lin, S. Y. El-Kady, I., Biswas, R. and Ho, K. M. Nature (London) 417, 52 (2002).CrossRefGoogle Scholar
11 Haus, H. A. Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, (1984).Google Scholar
12 Fan, S. and Joannopoulos, J. D. Phys. Rev. B 65, 235112 (2002).CrossRefGoogle Scholar
13 Celanovic, I. Jovanovic, N. and Kassakian, J. Appl. Phys. Lett. 92, 193101 (2008).CrossRefGoogle Scholar
14 Palik, E. D. Handbook of Optical Constants of Solids _Academic, Orlando (1985).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photonic Crystals: Shaping the Flow of Thermal Radiation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Photonic Crystals: Shaping the Flow of Thermal Radiation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Photonic Crystals: Shaping the Flow of Thermal Radiation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *