Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T02:09:13.289Z Has data issue: false hasContentIssue false

Passivation Studies on AlGaAs Surfaces Suitable for High Power Laser Development

Published online by Cambridge University Press:  26 February 2011

C. Edirisinghe
Affiliation:
Electronic Materials Group, Department of Metallurgy and Materials Science, Department of Electrical and Computing Engineering, University of Toronto, Toronto, Canada, M5S 1A4
H. E. Ruda
Affiliation:
Electronic Materials Group, Department of Metallurgy and Materials Science, Department of Electrical and Computing Engineering, University of Toronto, Toronto, Canada, M5S 1A4
I. Koutzarov
Affiliation:
Electronic Materials Group, Department of Metallurgy and Materials Science,
Q. Liu
Affiliation:
Electronic Materials Group, Department of Metallurgy and Materials Science,
L. Jedral
Affiliation:
Electronic Materials Group, Department of Metallurgy and Materials Science,
M. G. Boudreau
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Canada, L8S 4L7
M. Boumerzoug
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Canada, L8S 4L7
J. Brown
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Canada, L8S 4L7
P. Mascher
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Canada, L8S 4L7
A. Moore
Affiliation:
EG&G Canada, Optoelectronics Division, 22001 Dumberry, Vaudreuil, Canada, J7V 8P7
R. Henderson
Affiliation:
EG&G Canada, Optoelectronics Division, 22001 Dumberry, Vaudreuil, Canada, J7V 8P7
Get access

Abstract

We report on the optical characterization of sulphur (S) passivated AlxGa1−xAs/GaAs surfaces using photoluminescence (PL) and surface photovoltage (SPV) measurements. Both techniques show an enhancement in the near bandgap signal intensity, implying a reduction of the non-radiative recombination rate at the surface. To counter the instability of S-passivation, due to re-oxidation, dielectric layers of silicon nitride were deposited using electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR-PECVD); the deposition of dielectric layers up to lOOnm thick does not appear to cause significant deterioration or stress at the insulator/AlGaAs interface. The dielectric layers are shown to be resistant to oxidation, and effective in maintaining the passivation effect over a period of weeks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawanishi, H., Ohno, H., Morimoto, T., Kaneiwa, S., Miyauchi, N., Hayashi, H., Akagi, Y., Nakajima, Y. and Hijikata, T., in Ext. Abstr. 21st Conf. Solid. State Devices and Mat., Tokyo, 337 (1989).Google Scholar
2. Ohno, H., Kawanishi, H., Akagi, Y., Koba, M., Hijikata, T., in Chemical Perspectives of Microelectronic Materials II. edited by Interrante, L., Jensen, K., Dubois, L., and Gross, M. (Mat. Res. Soc. Symp. Proc., 204, Pittsburgh, PA, 1991), pp. 6570.Google Scholar
3. Guel, G., Armour, E., Sun, S., Srinivasan, S., Malloy, K. and Hersee, S., J. Electronic Mater., 21, 1051 (1992).Google Scholar
4. Hobson, W., Mohideen, U., Pearton, S., Slusher, R., and Ren, F., Electron Lett., 30, 233 (1994).Google Scholar
5. Dzioba, S., Rousina, R., J. Vac. Sci. Tech. B, 12 (1), 433 (1994).Google Scholar
6. Annual Book of ASTM Standards. American Society for Testing and Materials, F, 1990, pp.390–391.Google Scholar
7. Uchida, K., Nakatsuka, S., Jpn. J. Appl. Phys., 32, L883 (1993).Google Scholar
8. Wicks, G., Wang, W., Wood, C., Eastman, L., Rathbun, L., J. Appl. Phys. 52 (9) Sept. (1981).Google Scholar
9. Kuech, T., Veuhoff, E., Woolford, D.L., Bradley, J.A., Inst. Phys. Conf. Ser., UK, 74,181 (1985).Google Scholar
10. Souza, P.L. and Rao, E.V., J. Appl. Phys. 67, 7013 (1990).Google Scholar
11. Pavesi, L., Guzzi, M., J. Appl. Phys. 75 (10), 4779 (1994).Google Scholar
12. Olsthoorn, S., Driessen, F., Frigo, D., Giling, L., Int. Svmp.GaAs and Related Compounds. Inst. Phys. Conf. Ser., 136, (1993), pp. 779784.Google Scholar
13. Lamas, A., Gobbi, A., Mat. Science and Eng. B23, 142 (1994).Google Scholar
14. Piccirillo, A., Marzano, R., Gobbi, A., Bagnoli, P., Applied Surface Science, 52, 295 (1991).Google Scholar
15. Gerardi, G., Rong, F., Poindexter, E., Harmatz, M., Shen, H., Warren, W., in Amorphous Insulating Thin Films, edited by Kanicki, J., Warren, W., Devine, R., Matsuma, M., (Mat. Res. Symp. Proc.) 284, Pittsburgh, PA. 1993), pp. 601607.Google Scholar
16. Aspnes, D., Quinn, W., Tamargo, M., Pudensi, M., Schwarz, S., Brasil, M., Nahory, R. and Gregory, S., Appl. Phys. Lett. 60 (10), 1244 (1992).Google Scholar
17. Boudreau, M., Boumerzoug, M., Mascher, P., Jessop, P.E., Appl. Phys. Lett. 63 (22), 3014 (1993).Google Scholar
18. Lanford, W.A. and Rand, M.J., J. Appl. Phys. 49, 2473 (1978).Google Scholar