Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-21T07:35:07.775Z Has data issue: false hasContentIssue false

Oxygen Precipitation in Silicon

Published online by Cambridge University Press:  28 February 2011

S. M. Hu*
Affiliation:
IBM General Technology Division East Fishkill Facility, Hopewell Junction, NY 12533
Get access

Abstract

The precipitation of oxygen in silicon exhibits many interesting phenomena: the precipitates are often distributed in striated zones; the morphology of precipitates changes with annealing temperatures; the kinetics of precipitation in the bulk is affected by annealing ambients and other surface treatments. These phenomena are briefly reviewed. A model consistent with all these phenomena is presented. Then, the energetics and the kinetics of nucleation and precipitation are discussed. Finally, a growth law is derived in general for disc precipitates, and applied in particular to oxygen precipitates in silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, S. M. and Patrick, W. J., J. Appl. Phys. 46, 1869 (1975).Google Scholar
2. Hu, S. M., Appl. Phys. Lett. 31, 53 (1977).CrossRefGoogle Scholar
3. Yue, J. T. and Ruiz, H. J., in Semiconductor Silicon 1977, edited by Huff, H. R. and Sirtl, E. (Electrochemical Society, Pennington, NJ, 1977), p.596.Google Scholar
4. Sumino, K., Harada, H., and Yonegawa, I., Jpn. J. Appl. Phys. 19, L49 (1980).CrossRefGoogle Scholar
5. Chiou, H-D., Moody, J., Sandfort, R., and Shimura, F., in VLSI Science and Technology/1984, edited by Bean, K. E. and Rozgonyi, G. A. (Electrochemical Soc., Pennington, NJ, 1984), p.59.Google Scholar
6. Rozgonyi, G. A., Deysher, R. P., and Pearce, C. W., J. Electrochem. Soc. 123, 1910 (1976).Google Scholar
7. Hu, S. M., J. Vac. Sci. Technol. 14, 17 (1977).CrossRefGoogle Scholar
8. Tan, T. Y., Gardner, E. E., and Tice, W. K., Appl. Phys. Lett. 30, 175 (1977).CrossRefGoogle Scholar
9. Rozgonyi, G. A. and Pearce, C. W., Appl. Phys. Lett. 32, 747 (1978).Google Scholar
10. Patrick, W. J., Hu, S. M., and Westforp, W. A., J. Appl. Phys. 50, 1399 (1979).Google Scholar
11. Schwuttke, G. H., J. Electrochem. Soc. 108, 163 (1961).Google Scholar
12. Fiersmans, L. and Vennik, J., Phys. Stat. Solidi 12, 277 (1965).Google Scholar
13. Moerschel, K. G., Pearce, C. W., and Reusser, R. E., in Semiconductor Silicon 1977, edited by Huff, H. R. and Sirtl, E. (Electrochemical Soc., Pennington, NJ, 1977), p. 170.Google Scholar
14. Leroy, B. and Plougonven, C., J. Electrochem. Soc. 127, 961 (1980).CrossRefGoogle Scholar
15. Yonenaga, I. and Sumino, K., Jpn. J. Appl. Phys. 21, 47 (1982).Google Scholar
16. Hoshi, K., Isawa, N., Suzuki, T., and Ohkubo, Y., J. Electrochem. Soc. 132, 693 (1985).Google Scholar
17. Fuller, C. S., Ditzenberger, J. A., Hannay, N. B., and Buehler, E., Phys. Rev. 96, 833 (1954); Acta Met. 3, 97 (1955).Google Scholar
18. Fuller, C. S. and Logan, R. A., J. Appl. Phys. 28, 1427 (1957).Google Scholar
19. Kaiser, W., Frisch, H. L., and Reiss, H., Phys. Rev. 112, 1546 (1958).Google Scholar
20. Hu, S. M., J. Appl. Phys. 52, 3974 (1981).Google Scholar
21. de Kock, A. J. R., Philips Res. Rept. Suppl. N. 1 (1973)Google Scholar
22. Hu, S. M., Appl. Phys. Lett. 36, 561 (1980).Google Scholar
23. Craven, R. A., in Semiconductor Silicon 1981, edited by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, 1981), p. 254.Google Scholar
24. Schaake, H. F., Barber, S. C., and Pinizzotto, R. F., in Semiconductor Silicon 1981, edited by Huff, H. R., Kriegler, R. J.. and Takeishi, Y. (Electrochemical Society, Pennington, 1981), p. 344.Google Scholar
25. Oehrlein, G. S., Lindstroem, J. L., and Corbett, J. W., Appl. Phys. Lett. 40, 241 (1982).Google Scholar
26. Kaiser, w., Keck, P. H., and Lange, C. F., Phys. Rev. 101, 1264 (1956).Google Scholar
27. Kaiser, W. and Keck, P. H., J. Appl. Phys. 28, 882 (1957).Google Scholar
28. Rostowski, H. J. and Kaiser, R. H., Phys. Rev. 107, 966 (1957).Google Scholar
29. Rath, H. J., Stallhofer, P., Huber, D., and Schmitt, B. F., J. Electrochem. Soc. 131, 1920 (1984).CrossRefGoogle Scholar
30. lizuka, T., Takasu, S., Tajima, M., Arai, T., Nozaki, T., Inoue, N., and Watanabe, M., J. Electrochem. Soc. 132, 1707 (1985).Google Scholar
31. Hu, S. M., J. Appl. Phys. 51, 5945 (1980).Google Scholar
32. Hu, S. M., J. Appl. Phys. 45, 1567 (1974).Google Scholar
33. Leroy, B., J. Appl. Phys. 50, 7996 (1979).Google Scholar
34. Fair, R. B., J. Electrochem. Soc. 128, 1360 (1981).Google Scholar
35. Antoniadis, D. A., J. Electrochem. Soc. 129, 1093 (1982).Google Scholar
36. Tan, T. Y. and Goesele, U., Appl. Phys. A37, 1 (1985).Google Scholar
37. Watkins, G. D., in Radiation Damage in Semiconductors, (Dunod, Paris, 1965), p. 97.Google Scholar
38. Hu, S. M., in Atomic Diffusion in Semiconductors, edited by Shaw, D. (Plenum, London, 1973), p. 217.Google Scholar
39. Frank, W., Goesele, U., Mehrer, H., and Seeger, A., in Diffusion in Crystalline Solids II, edited by Murch, G. and Nowick, A. S. (Academic, New York, 1984) p. 63.Google Scholar
40. Car, R., Kelly, P. J., Oshiyama, A., and Pantelides, S., Phys. Rev. Lett. 52, 1814 (1984); 54, 360 (1985).Google Scholar
41. Hrostowski, H. J. and Kaiser, R. H., J. Phys. Chem. Solids 9, 214 (1959).Google Scholar
42. Mikkelsen, J. C. Jr., Appl. Phys. Lett. 41, 871 (1982).Google Scholar
43. Strunk, H., Goesele, U., and Kobelsen, B. O., Appl. Phys. Lett. 34, 530 (1979).Google Scholar
44. Hu, S. M., Fahey, P., and Dutton, R. W., J. Appl. Phys. 54, 6912 (1983).Google Scholar
45. Harris, R. M. and Antoniadis, D. A., Appl. Phys. Lett. 43, 979 (1983).Google Scholar
46. Fahey, P., Dutton, R. W., and Hu, S. M., Appl. Phys. Lett. 44, 777 (1984).Google Scholar
47. Fair, R. B., J. Appl. Phys. 54, 388 (1983).Google Scholar
48. Goesele, U. and Tan, T. Y., Appl. Phys. A 28, 79 (1982).Google Scholar
49. Hu, S. M., J. Appl. Phys. 51, 3666 (1980).CrossRefGoogle Scholar
50. Graff, K., Grallath, E., Ades, S., Goldbach, G, and Toelg, G., Solid-State Electron.16, 887 (1973).Google Scholar
51. Sugita, Y., Shimizu, H., Yoshinaka, A., and Aoshima, T., J. Vac. Sci. Technol. 14, 44 (1977).Google Scholar
52. Hu, S. M., in Defects in Semiconductors, edited by Narayan, J. and Tan, T. Y. (North-Holland, New York, 1981), p. 333.Google Scholar
53. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 21, 281 (1982).CrossRefGoogle Scholar
54. Arst, M. C. and de Groot, J. G., J. Electron. Mater. 13, 763 (1984).Google Scholar
55. Takano, Y., Kozuka, H., Ogirima, M., and Maki, M., in Semiconductor Silicon 1981, edited by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, NJ, 1981), p. 743.Google Scholar
56. Bourret, A., Thibault-Desseaux, J., and Seidman, D. N., J. Appl. Phys. 55, 825 (1984).Google Scholar
57. Bender, H., Phys. Stat. Solidi (a) 86, 245 (1984).Google Scholar
58. Bergholz, W., Pirouz, P., and Hutchison, J. L., in Proc. 13th Intl. Conf. Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. M. Jr. The Metallurgical Society, AIME, Warrendale, PA, 1984), p. 717.Google Scholar
59. Olivier, M., Lafeuille, D., Dupuy, M., Rolland, G., and Guinet, G., Electrochem. Soc. Meeting, Toronto, 1975, Extended Abstracts, (Electrochemical Society, Pennington, NJ, 1975) vol. 75–1, p. 343.Google Scholar
60. Tan, T. Y. and Tice, W. K., Philos. Mag. 34, 615 (1976).CrossRefGoogle Scholar
61. Maher, D. M., Staudinger, A., and Patel, J. R., J. Appl. Phys. 47, 3813 (1976).CrossRefGoogle Scholar
62. Patrick, W. J., Hearn, E., Westdorp, W. A., and Bogh, A., J. Appl. Phys. 50, 7156 (1979).Google Scholar
63. Tempelhoff, K., Spiegelberg, F., Gleichmann, R., and Wruck, D., Phys. Stat.Sol. (a) 56, 213 (1979).Google Scholar
64. Shimura, F., Tsuya, H., and Kawamura., T. J. Appl. Phys. 51, 269 (1980).Google Scholar
65. Claeys, C., Bender, H., Declerck, G., Van Landuyt, J., Overstraeten, R. Van, and Amelincks, S., in Aggregation Phenomena of Point Defects in Silicon, edited by Sirtl, E. and Goorissen, J. (Electrochemical Society, Pennington, NJ, 1983), p. 74.Google Scholar
66. Yang, K. H., Kappert, H. F., and Schwuttke, G. H., Phys. Stat. Sol. (a) 50, 221 (1978).Google Scholar
67. Shimura, F., J. Cryst. Growth, 54, 588 (1981).Google Scholar
68. Ponce, F. A., Yamashita, T., and Hahn, S., Appl. Phys. Lett. 30, 1518 (1983).Google Scholar
69. Tsai, H. L., J. Appl. Phys. 58, 3775 (1985).Google Scholar
70. Boyd, F. R. and England, J. L., J. Geophys. Res. 65, 749 (1960).Google Scholar
71. Nabarro, F. R. N., Proc. R. Soc. A, 175, 519 (1940).Google Scholar
72. Hu, S. M., Appl. Phys. Lett. 31, 139 (1977).Google Scholar
73. Hu, S. M., Appl. Phys. Lett. 27, 165 (1975).Google Scholar
74. Jaccodine, R. J., J. Electrochem. Soc. 110, 524 (1963).Google Scholar
75. Wortman, J. J. and Evans, R. A., J. Appl. Phys. 36, 153 (1965).Google Scholar
76. Brantley, W. A., J. Appl. Phys. 44, 534 (1973).Google Scholar
77. Nye, J. F., Physical Properties of Crystals (Clarendon Press, Oxford, 1957).Google Scholar
78. Wada, K., Inoue, N., and Kohra, K., J. Cryst. Growth 49, 749 (1980).Google Scholar
79. Osaka, J., Inoue, N., and Wada, K., Appl. Phys. Lett. 36, 288 (1980).CrossRefGoogle Scholar
80. Inoue, N., Wada, K., and Osaka, J., in Semiconductor Silicon 1981, edited by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, NJ, 1981), p. 244.Google Scholar
81. Becker, R. and Doering, W. Ann. Phys. (5) 24, 719 (1935).Google Scholar
82. Zeldovich, J., J. Exp. Theor. Phys. 12, 525 (1942).Google Scholar
83. See for example, Hirth, J. P. and Pound, G. M., Condensation and Evaporation, (Macmillan, New York, 1963).Google Scholar
84. Mott, N. F. and Nabarro, F. R. N., Proc. Phys. Soc. 52, 86 (1940).Google Scholar
85. For example, see Kroupa, F., Czech. J. Phys. B10, 284 (1960).Google Scholar
86. Matsumoto, S., Ishihara, I., and Kaneko, H., Appl. Phys. Lett. 46, 957 (1985).Google Scholar
87. Goesele, U. and Frank, W., in Defects in Semiconductors, Narayan, J. and Tan, T. Y., eds. (North-Holland, New York, 1982), pp.5570.Google Scholar
88. Flynn, C. P., Phys. Rev. 133, A587 (1964); also in Point Defects and Diffusion (Clarendon Press, Oxford, 1972), p. 486.Google Scholar
89. Seidman, D. N. and Balluffi, R. W., Philos. Mag. 13, 649 (1966).Google Scholar
90. Wada, K. and Inoue, N., J. Cryst. Growth 71, 111 (1985).Google Scholar
91. Freeland, P. E., Jackson, K. A., Lowe, C. W., and Patel, J. R., Appl. Phys. Lett. 30, 31 (1977).CrossRefGoogle Scholar
92. Kugimiya, K., Akiyama, S., and Nakamura, S., in Semiconductor Silicon -1981, Huff, H. R., Kriegler, R. J., and Takeshi, Y., eds. (Electrochem. Soc., Pennington, NJ 1981), p. 294.Google Scholar
93. Ball, A. and Payne, B. W., J. Mater. Sci. 11, 731 (1976).Google Scholar
94. Ham, F. S., J. Appl. Phys. 30, 1518 (1959).Google Scholar