Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-21T07:05:50.301Z Has data issue: false hasContentIssue false

Oxygen Precipitation in N+ Silicon

Published online by Cambridge University Press:  28 February 2011

W. Dyson
Affiliation:
Monsanto Electronic Materials Co. Highway 79, St. Peters, MO 63376 3601 Juliette Lane, Santa Clara, CA 95051
J. Makovsky
Affiliation:
Intel Corp. 3601 Juliette Lane, Santa Clara, CA 95051
Get access

Extract

The advantages of oxygen precipitation in terms of intrinsic gettering to reduce oxidation induced surface defect densities and improve minority carrier generation lifetimes (τ) are well documented in the literature (1–3). Various gettering cycles to establish oxygen precipitation in n type and p type nondegenerate substrates have been developed (4–6), based on homogeneous nucleation theory. For nondegenerate silicon no differences in oxygen precipitation kinetics related to the dopant type have been reported. However, with the increasing interest in both p/p+ and n/n+ epitaxial layers for CMOS devices (7), work on the precipitation of oxygen in both p+ and n+ degenerate silicon substrates has revealed a dependence of oxygen precipitation kinetics on dopant type (8–11). In the case of p+ silicon the differences in precipitation kinetics are small when compared to p- silicon (10,11). For n+ silicon it has been reported (8–11) that the dopant concentration plays a major role and that a significant retardation of oxygen precipitation is observed. There are currently two different explanations for the difficulty encountered in producing sufficient oxygen precipitation in n+ Si. These are the failure to incorporate sufficient oxygen into the crystal during crystal growth (12) and an interaction between intrinsic point defects and the n type dopant, which influences the oxygen precipitation kinetics (8,13).

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Tan, T. Y., Gardner, E.E., and Tice, W.K., Appl. Phys. Lett. 30, 175 (1977).CrossRefGoogle Scholar
2) Nagasawa, K., Matsushita, Y., and Kishino, S., AppI. Phys. Lett. 37, 622 (1900).Google Scholar
3) Huff, H. R., Schaake, H. F., Robinson, J. T., Baker, S.C. and Wang, D., J. Electrochem. Soc. 30, 1551 (1983).Google Scholar
4) Inuve, N., Wada, K. and Osaka, J., “Semiconductor Silicon 1981” Eds. Huff, H. R., Kriegler, R. J. and Takeishi, Y. (Electrochem. Soc., Princeton, N.J. 1981).Google Scholar
5) Murgai, A., Patrick, W. J., Combronde, J., Felix, J. C., IBM J. Res. Develop., 26, 546 (1982).Google Scholar
6) Shimura, F. and Tsuya, H J., J. Electrochem. Soc. 129, 2029 (1982).Google Scholar
7) Electronics, April 5, 1984 (Special CMOS issue).Google Scholar
8) Kock, A. J. de and Van de Wijgert, W. M., Appl. Phys. Lett. 39 888 (1981).CrossRefGoogle Scholar
9) Pearce, C.W. and Rozgonyi, G.A. “VLSI Science and Technology (1982). Eds. Dell'Oca, C. J. and Billis, W. M. (The Electrochem. Soc. Pennington, N. J.) P.53 Google Scholar
10) Tsuya, H., Kondo, Y. and Kanamori, M., Jap. J. Appl. Phys. 22, P116 (1983).Google Scholar
11) Dyson, W., O'Grady, S., Rossi, J. A., Hellwig, L.G. and J. W. Moody in Ref 9, P. 107Google Scholar
12) Ito, Y., Nozaki, T., Masui, T. and Abe, T., The proceedings of 31st Applied Physics Conference (Kawasaki, Japan, 1984) P. 609 (in Japanese).Google Scholar
13) Shimura, F., Dyson, W., Moody, J. W. and Hockett, R.S., Vlsi Science and Technology (1985). Eds. Bullis, W. M. and Broydo, S. (Electrochem. Soc. Pennington, N.J. 1985) P. 507 Google Scholar
14) Hu, S. M., App. Phys. Lett. 36, 561 (1980)Google Scholar
15) Peibst, H. and Raidt, H., Phys. Stat. sol. (a) 68, 253 (1981).Google Scholar
16) Hu, S. M., J. Appl. Phys. 52, 3974 (1981).Google Scholar
17) Tempelhoff, K. and Van Sung, N., Phys. Stat. Sol. (a) 70, 441 (1982).Google Scholar
18) Gosele, U. and Tan, T. Y., Aggregation Phenomena of Point Defects in Silicon (Sirtl, E. and Goorissen, J., eds., The Electrochemical Society, Pennington, NJ, 1983), P. 17.Google Scholar
19) Heck, D., Tressler, R. E. and Monkowski, J., J. Appl. Phys. 54 5739 (1983).Google Scholar
20) Jenkins, M. Wright, J. Electrochem. Soc. 124, 757 (1977).Google Scholar