Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-rlmms Total loading time: 0.157 Render date: 2021-10-24T20:02:11.592Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Oxygen Nonstoichiometry and Related Problems of High-Tc Oxide Superconductors Investigated by Thermogravimetry

Published online by Cambridge University Press:  21 February 2011

K. Kishio
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
T. Hasegawa
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
K. Suzuki
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
K. Kitazawa
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
K. Fueki
Affiliation:
Department of Industrial Chemistry, Faculty of Science and Technology, Science University of Tokyo, Yamazaki, Noda 278, Japan
Get access

Abstract

Thermogravimetry (TG) is a sensitive and powerful tool for investigation of oxygen nonstoichiometry and related properties in mixed-valence oxide systems and has been extensively applied to a series of high-Tc oxide superconductors. Nonstoichiometry, phase stability ranges, and oxygen diffusion as investigated mainly through the TG technique in several systems of high-Tc oxides are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Raveau, B., Michel, C., Hervieu, M. and Provost, J., in Progress in High Temperature Superconductivity, edited by Gupta, A. K., Joshi, S. K. and Rao, C. N. R. (World Scientific, Singapore, 1988) 16, pp.15–27; K. Fueki, K. Kitazawa, K. Kishio and T. Hasegawa, in Progress in High Temperature Superconductivity, edited by A. K. Gupta, S. K. Joshi and C. N. R.Rao (World Scientific, Singapore, 1988) 16, pp. 119–127.Google Scholar
2. Torrance, J. B., Tokura, Y., Nazzal, A. I., Bezinge, A., Huang, T. C. and Parkin, S. S. P., Phys. Rev. Lett., 61, 1127 (1988); Phys. Rev., B38, 7156 (1988).CrossRefGoogle Scholar
3. Harris, D. C. and Hewston, T. A., J. Solid State Chem., 69, 182 (1987).CrossRefGoogle Scholar
4. Kishio, K., Shimoyama, J., Hasegawa, T., Kitazawa, K. and Fueki, K., Jpn. J.Appl. Phys., 26, L1228 (1987).CrossRefGoogle Scholar
5. Appelman, E. H., Morss, L. R., Kini, A. M., Geiser, U., Umezawa, A., Crabtree, G. W. and Carlson, K. D., Inorg. Chem., 26, 3237 (1987).CrossRefGoogle Scholar
6. Nazzal, A. I., Lee, V. Y., Engler, E. M., Jacowitz, R. D., Tokura, Y. and Torrance, J. B., Physica 153–155C, 1367 (1988).CrossRefGoogle Scholar
7. Bednorz, J. G. and Muller, K. A., Z. Phys., B 64, 189 (1986).CrossRefGoogle Scholar
8. Takagi, H., Uchida, S., Kitazawa, K. and Tanaka, S., Jpn. J. Appl. Phys., 26, L123 (1987); L218 (1987).CrossRefGoogle Scholar
9. Kishio, K., Hasegawa, T., Shimoyama, J., Ooba, N., Kitazawa, K. and Fueki, K., in Sintering '87, edited by Somiya, S. et al., (Elsevier Science, Tokyo, 1988), 2, pp. 14441449.Google Scholar
10. Fueki, K., Kitazawa, K., Kishio, K. and Hasegawa, T., in Chemistry of High- Temperature Superconductors, edited by Nelson, D. L., Whittingham, M. S. and George, T. F., (Amer. Chem. Soc. Symp. Ser. #351, 1987), Chapter 4.CrossRefGoogle Scholar
11. Tokura, Y., Takagi, H. and Uchida, S., Nature 337, 345 (1989).CrossRefGoogle Scholar
12. Takayama-Muromachi, E., Izumi, F., Uchida, Y., Kato, K. and Asano, H., preprint.Google Scholar
13. Kishio, K., Suzuki, K., Hasegawa, T., Yamamoto, T., Kitazawa, K. and Fueki, K., submitted to J. Solid State Chem.Google Scholar
14. Lindemer, T. B. and Sutton, A. L. Jr., ORNL Report, ORNL/TM-10827 (1988).Google Scholar
15. Liang, R. and Nakamura, T., Jpn. J. Appl. Phys., 27, L1277 (1988).CrossRefGoogle Scholar
16. Wada, T., Suzuki, N., Maeda, A., Yabe, T., Uchinokura, K., Uchida, S. and Tanaka, S., Phys. Rev. B, submitted.Google Scholar
17. Maeno, Y. and Fujita, T., Physica, C 153–155, 1105 (1988).CrossRefGoogle Scholar
18. Nakabayashi, Y., Kubo, Y., Manako, T., Tabuchi, J., Ochi, A., Utsumi, K., Igarashi, H. and Yonezawa, M., Jpn. J. Appl. Phys., 27, L64 (1989).CrossRefGoogle Scholar
19. Kambe, S., Kishio, K., Ooba, N., Sugii, N., Kitazawa, K. and Fueki, K., in Superconducting Materials, edited by Nakajima, S. and H. Fukuyama, (JJAP Series 1), pp. 11–14 (1988).Google Scholar
20. Tarascon, J. M., Page, Y. Le, Barboux, P., Bagley, B. G., Greene, L. H., Mckinnon, W. R., Hull, G. W., Giroud, M. and Hwang, D. M., Phys. Rev., B37, 9382 (1988).CrossRefGoogle Scholar
21. Cava, R. J., Batlogg, B., Krajewski, J. J., Rupp, L. W., Schneemeyer, L. F., Siegrist, T., vanDover, R. B., Marsh, P., Peck, W. F. Jr., Gallagher, P. K., Glarum, S. H., Marshall, J. H., Farrow, R. C., Waszczak, J. V., Hull, R. and Trevor, P., Nature, 336, 211 (1988).CrossRefGoogle Scholar
22. Gallagher, P. K., O'Bryan, H. M., Cava, R. J., James, A. C. W. P., Murphy, D. W., Rhodes, W. W., Krajewski, J. J., Peck, W. F. and Waszczak, J. V., preprint.Google Scholar
23. Hinks, D. G., Dabrowski, B., Jorgensen, J. D., Mitchell, A. W., Richards, D. R., Shiyou Pei and Donglu Shi, Nature, 333, 836 (1988).CrossRefGoogle Scholar
24. Hinks, D. G., Richards, D. R., Dabrowski, B., Mitchell, A. W., Jorgensen, J. D. and Marx, D. T., Phisica, C 156, 477 (1988).CrossRefGoogle Scholar
25. Ikuma, Y. and Akiyoshi, S., J. Appl. Phys., 64, 15 (1988).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Oxygen Nonstoichiometry and Related Problems of High-Tc Oxide Superconductors Investigated by Thermogravimetry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Oxygen Nonstoichiometry and Related Problems of High-Tc Oxide Superconductors Investigated by Thermogravimetry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Oxygen Nonstoichiometry and Related Problems of High-Tc Oxide Superconductors Investigated by Thermogravimetry
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *