Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T12:09:37.187Z Has data issue: false hasContentIssue false

The Oxide/Nitride Interface: a study for gate dielectrics and field passivation

Published online by Cambridge University Press:  01 February 2011

B.P. Gila
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
B. Luo
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
J. Kim
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
R. Mehandru
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
J.R. LaRoche
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
A.H. Onstine
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
E. Lambers
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
K. Siebein
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
C.R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
S.J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

The study of the effects of substrate surface preparation of GaN, both in-situ and ex-situ and the subsequent deposition of dielectric materials is necessary to create a viable GaN FET technology. Surface preparation techniques have been explored using RHEED, AES, SIMS and C-V measurements to produce films of low interface trap density, 1–2E11 eV−1cm−2. A similar study of the as-fabricated HEMT surface was carried out to create a cleaning procedure prior to dielectric passivation. Dielectric films of Sc2O3 and MgO were deposited via gas-source MBE. Post-deposition materials characterization included AES, TEM, XRR and XPS, as well as gate pulse and isolation current measurements for the passivated HEMT devices. From this study, the relationship between the interface structure and chemistry and the quality of the oxide/nitride electrical interface has been determined. The resulting process has led to the near elimination of the current collapse phenomenon. In addition, the resulting oxide/nitride interface quality has allowed for the first demonstration of inversion in GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kortan, A.R., Hong, M., Kwo, J., Mannaerts, J.P., Kopylov, N., Materials Research Society Symposium Proceedings, 573, 21 (1999)Google Scholar
2. Vetury, R. and Zhang, N.W., IEEE Tran. Elecrton. Devices 48, p. 416 (2001)Google Scholar
3. Tan, W.S. and Houston, P.A., J. of Physics D: Appl. Physics 35, p. 595 (2002)Google Scholar
4. Luo, B, Johnson, JW, Kim, J, Mehandru, RM, Ren, F, Gila, BP, Onstine, AH, Abernathy, CR, Pearton, SJ, Baca, AG, Briggs, RD, Shul, RJ, Monier, C, Han, J; APPLIED PHYSICS LETTERS 80 (9): 16611663 (2002)Google Scholar
5. Johnson, J.W., Gila, B.P., Luo, B., Lee, K.P., Abernathy, C.R., Pearton, S.J., Chyi, J. I., Nee, T. E., Lee, C. M., Chu, C. C., Anderson, T.J., and Ren, F., in SOTAPOCS XXXIII, Baca, A.G. and Kopf, R.F., editors, PV 2000–18, p. 152, The Electrochemical Society Series, Pennington, NJ (2000)Google Scholar
6. Luo, B., Mehandru, R.M., Kim, J., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Fitch, R.C., Gillespie, J., Dellmer, R., Jenkins, T., Sewell, J., Via, D., Crespo, A; SolidState Electronics 46, p. 2185 (2002)Google Scholar
7. Luo, B., Johnson, J.W., Gila, B.P., Onstine, A., Abernathy, C.R., Ren, F., Pearton, S.J., Baca, A.G., Dabiran, A.M., Wowchack, A.M., Chow, P.P., Solid-State Electronics v 46 n 4 p 467476 (2002)Google Scholar
8. Luo, B., Mehandru, R, Kim, J., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Fitch, R., Gillespie, J., Jenkins, T., Sewell, J., Via, D., Crespo, A., Irokawa, Y.; Journal of the Electrochemical Society 149 (11), pp.G613-G619 (2002)Google Scholar
9. Gillespie, J.K., Fitch, R.C., Sewell, J., Dettmer, R., Via, G.D., Crespo, A., Jenkins, T.J., Luo, B., Mehandru, R., Kim, J., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J.; IEEE Electron Device Letters, 23 (9), p. 505 (2002)Google Scholar
10. Mehandru, R., Luo, B., Kim, J., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Gotthold, D., Birkhahn, R., Peres, B., Fitch, R., Gillespie, J., Jenkins, T., Sewell, J., Via, D., Crespo, A.; Applied Physics Letters, 82 (15), p. 2530 (2003)Google Scholar
11. Kim, J., Mehandru, R., Luo, B., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Irokawa, Y., Applied Physics Letters, 80 (24) p. 4555 (2002)Google Scholar
12. Kim, J., Mehandru, R., Luo, B., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Irokawa, Y.; Applied Physics Letters, 81(2), pp. 373 (2002)Google Scholar
13. Kim, J., Mehandru, R., Luo, B., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Irokawa, Y.; Electronic Letters, 38 (16), p. 920 (2002)Google Scholar
14. Prabhakaran, K., Andersson, T.G., Nozawa, K.; Applied Physics Letters 69 (21), p. 3212 (1996)Google Scholar
15. Zywietz, T.K., Neugebauer, J., Scheffier, M.; Applied Physics Letters 74 (12), p. 1695 (1999)Google Scholar
16. Watkins, N.J., Wicks, G.W., Gao, Y.; Applied Physics Letters 75 (17), p. 2602 (1999)Google Scholar
17. Nakasaki, R., Hashizume, T., Hasegawa, H.; Physica E 7, p. 953 (2000)Google Scholar
18. Wolter, S.D., DeLucca, J.M., Mohoney, S.E., Kern, R.S., Kuo, C.P.; Thin Solid Films 371, p. 153 (2000)Google Scholar
19. Shalish, I., Shapira, Y., Burstein, L., Salzman, J.; Applied Physics Letters 89 (1), p. 390 (2001)Google Scholar