Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-mpvvr Total loading time: 0.215 Render date: 2021-07-31T16:54:06.392Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Oxidation Dynamics of Aluminum Nanorods

Published online by Cambridge University Press:  07 February 2013

Ying Li
Affiliation:
Collaboratory for Advanced Computation and Simulations Departments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer Science University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Aiichiro Nakano
Affiliation:
Collaboratory for Advanced Computation and Simulations Departments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer Science University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Rajiv K. Kalia
Affiliation:
Collaboratory for Advanced Computation and Simulations Departments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer Science University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Priya Vashishta
Affiliation:
Collaboratory for Advanced Computation and Simulations Departments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer Science University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Get access

Abstract

Understanding of combustion of metastable intermolecular composites, including the burning of aluminum nanoparticles, is critical for broad applications such as propulsion, explosives and other pyrotechnics. Aluminum nanorods (Al-NR) with oxidized shells are good candidates for stable fuel-oxidizer combinations. We investigate the oxidation dynamics of Al-NRs of different diameters (26, 36 and 46 nm) but the same aspect ratio using molecular dynamics simulations. We heat one end of the Al-NR to 1100 K and then study the oxidation reaction at the interface of the alumina shell and the Al core. We find: (1) heat produced by oxidation causes the melting of nanorods; (2) heat release is accelerated due to Al-O reaction at outside-shell and core-shell interfaces; and (3) the larger surface-to-volume ratio causes faster burning of thinner nanorods. We present results for the oxidation speed of nanorods.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, S.F., Yang, Y.Q., Sun, Z.Y., Dlott, D.D., Chem Phys Lett, 368189–194 (2003).
Mench, M.M., Kuo, K.K., Yeh, C.L., Lu, Y.C., Combust Sci Technol, 135 269292 (1998).10.1080/00102209808924161CrossRef
Levitas, V.I., Combust Flame, 156 543546 (2009).10.1016/j.combustflame.2008.11.006CrossRef
Rashkovskii, S.A., Combust Explo Shock Waves, 43 654663 (2007).10.1007/s10573-007-0088-0CrossRef
Il'in, A.P., Popenko, E.M., Gromov, A.A., Shamina, Y.Y., Tikhonov, D.V., Combust Explo Shock Waves, 38 665669 (2002).CrossRef
Grigorev, V.G., Zarko, V.E., Kutsenogii, K.P., Combust Explo Shock Waves, 17 245251 (1981).10.1007/BF00751292CrossRef
Karasev, V.V., Onischuk, A.A., Glotov, O.G., Baklanov, A.M., Maryasov, A.G., Zarko, V.E., Panfilov, V.N., Levykin, A.I., Sabelfeld, K.K., Combust Flame, 138 4054 (2004).10.1016/j.combustflame.2004.04.001CrossRef
Gallier, S., Sibe, F., Orlandi, O., P Combust Inst, 33 19491956 (2011).10.1016/j.proci.2010.05.046CrossRef
Zhu, P., Li, J.C.M., Liu, C.T., Mat Sci Eng a-Struct, 240 532539 (1997).10.1016/S0921-5093(97)00627-8CrossRef
Malchi, J.Y., Yetter, R.A., Son, S.F., Risha, G.A., P Combust Inst, 31 26172624 (2007).10.1016/j.proci.2006.08.046CrossRef
Subramaniam, S., Hasan, S., Bhattacharya, S., Gao, Y., Apperson, S., Hossain, M., Shende, R.V., Gangopadhyay, S., Redner, P., Kapoor, D., Nicolich, S., Mater Res Soc Symp P, 896 914 (2006).
Weismiller, M.R., Malchi, J.Y., Lee, J.G., Yetter, R.A., Foley, T.J., P Combust Inst, 33 19891996 (2011).10.1016/j.proci.2010.06.104CrossRef
Pivkina, A., Ulyanova, P., Frolov, Y., Zavyalov, S., Schoonman, J., Propell Explos Pyrot, 29 3948 (2004).10.1002/prep.200400025CrossRef
Bezmelnitsyn, A., Thiruvengadathan, R., Barizuddin, S., Tappmeyer, D., Apperson, S., Gangopadhyay, K., Gangopadhyay, S., Redner, P., Donadio, M., Kapoor, D., Nicolich, S., Propell Explos Pyrot, 35 384394 (2010).10.1002/prep.200800077CrossRef
Hao, F., Sonnefraud, Y., Van Dorpe, P., Maier, S.A., Halas, N.J., Nordlander, P., Nano Lett, 8 39833988 (2008).10.1021/nl802509rCrossRef
Pomfret, M.B., Brown, D.J., Epshteyn, A., Purdy, A.P., Owrutsky, J.C., Chem Mater, 20 59455947 (2008).10.1021/cm801983wCrossRef
Li, C.S., Ji, W.Q., Chen, J., Tao, Z.L., Chem Mater, 19 58125814 (2007).10.1021/cm7018795CrossRef
Lu, Y.B., Tohmyoh, H., Saka, M., Pan, H.L., Optoelectron Adv Mat, 5 12191222 (2011).
Yang, S.M., Jang, S.G., Choi, D.G., Kim, S., Yu, H.K., Small, 2 458475 (2006).10.1002/smll.200500390CrossRef
Vashishta, P., Nakano, A., Kalia, R.K., Ebbsjo, I., Mat Sci Eng B-Solid, 37 5671 (1996).10.1016/0921-5107(95)01458-6CrossRef
Cohen, J.M., Voter, A.F., Surf Sci, 313 439447 (1994).10.1016/0039-6028(94)90063-9CrossRef
Wang, W.Q., Clark, R., Nakano, A., Kalia, R.K., Vashishta, P., Appl Phys Lett, 95 261901 (2009).10.1063/1.3268436CrossRef
Wang, W.Q., Clark, R., Nakano, A., Kalia, R.K., Vashishta, P., Appl Phys Lett, 96 181906 (2010).10.1063/1.3425888CrossRef
Bockmon, B.S., Pantoya, M.L., Son, S.F., Asay, B.W., Mang, J.T., J Appl Phys, 98 064903 (2005).10.1063/1.2058175CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Oxidation Dynamics of Aluminum Nanorods
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Oxidation Dynamics of Aluminum Nanorods
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Oxidation Dynamics of Aluminum Nanorods
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *