Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-30T19:42:20.645Z Has data issue: false hasContentIssue false

Optimisation of Junctions formed by Solid Phase Epitaxial Regrowth for sub-70nm CMOS

Published online by Cambridge University Press:  01 February 2011

Richard Lindsay
IMEC, Kapeldreef 75, Leuven, B3001 Belgium. Philips Research Leuven, IMEC, Leuven, B3001 Belgium.
Bartlomiej J. Pawlak
IMEC, Kapeldreef 75, Leuven, B3001 Belgium. Philips Research Leuven, IMEC, Leuven, B3001 Belgium.
Peter Stolk
IMEC, Kapeldreef 75, Leuven, B3001 Belgium. Philips Research Leuven, IMEC, Leuven, B3001 Belgium.
Karen Maex
IMEC, Kapeldreef 75, Leuven, B3001 Belgium. Philips Research Leuven, IMEC, Leuven, B3001 Belgium.
Get access


For the 70nm CMOS node, it is anticipated that conventional implantation and spike annealing approaches, even with pre-amorphisation and co-implantation, are unlikely to provide pMOS junctions consistent with the ITRS requirements. Here the junction performance is limited by equilibrium solid solubility.

As laser annealing and in-situ doping techniques currently have unsolved integration problems, there is a renewed interest in using solid phase epitaxial regrowth (SPER) to form ultra-shallow metastable junctions. Such junctions have the potential to have an active dopant profile similar to the as-implanted profile. This offers above equilibrium solid solubility and abrupt profiles compatible with 70nm and even 45nm nodes. However there are concerns about residual defects, deactivation, diffusion and uniformity.

In this paper we show how the Ge, F and B implant and SPER anneal can be optimised for abrupt, uniform and highly activated B junctions. There is latitude for higher doses and energies than conventional implants, however results show that this may lead to clustering causing enhanced deactivation and reduced mobility. We give attention to the probing issues involved in characterising partially annealed junctions.

With this approach, p-type junctions having a sheet resistance of 265 ohms/sq and depth of 22nm are realised which are compatible with 70nm and potentially 45nm CMOS nodes.

Research Article
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1] Murto, R., Proc. 3rd National implant users meeting, Oct 1999 Google Scholar
[2] Lindsay, R., Lauwers, A., Frühauf, J., Potter, M. De, and Maex, K.. Proc. USJ2001, p255 Google Scholar
[3] Lerch, W., Mattson, Germany, private communicationGoogle Scholar
[4] Al-Bayati, A., Tandon, S., Mayur, A., Foad, M., Wagner, D., Murto, R., Sing, D., Ferguson, C., and Larson, L., Ion Implantation Technology, 2000. p 5461 Google Scholar
[5] Ozturk, M. C., Wortman, J.J, Osburn, C. M., Ajmera, A., Rozgonyi, G. A., Frey, E.,Chu, W.K., Lee, C., IEEE Transactions on Electron Devices, Volume: 35 Issue: 5, May 1988 pp.659668 Google Scholar
[6] Meyssen, V., Stolk, P., Zijl, J. Van, Berkum, J. Van, Wijgert, W. Van de, Lindsay, R., Dachs, C., Mannino, G., and Cowern, N.. Proceedings of Semicon West, San Francisco, April 2001 Google Scholar
[7] Li, H.J.; Kohli, P., Ganguly, S., Kirichenko, T. A., Zeitzoff, P., Torres, K., Banerjee, S., Electron Devices Meeting, IEDM Technical Digest. International, 2000. pp 515518 Google Scholar
[8] Robertson, L. S., Warnes, P.N., Law, M. E., Jones, K. S., Downey, D. F., Liu, J., Ion Implantation Technology, 2000, pp.171174 Google Scholar
[9] Ban, I., Ozturk, M. C., Demirlioglu, E., IEEE Transactions on Electron Devices, Volume: 44 Issue: 9, Sept. pp 15441551 Google Scholar
[10] Pawlak, B.J., Lindsay, R., Surdeanu, R., Stolk, P., Maex, K., submitted to IIT2002-03-25Google Scholar
[11] Talwar, S., Felch, S., Downey, D., Wang, Y., Ion Implantation Technology, 2000. pp175177 Google Scholar
[12] Mayur, A., AMAT, Santa Clara, private communicationGoogle Scholar
[13] Gannavaram, S., Pesovic, N., Ozturk, M. C., Electron Devices Meeting, 2000. IEDM Technical Digest. International, pp 437440 Google Scholar
[14] Jin, J.Y., Liu, J., Jeong, U., Metha, S., Jones, K., J. Vac. Sci. Tech. B 20(1) 2002, p422 Google Scholar
[15] Hong, S. N., Ruggles, G. A., Wortman, J. J., Ozturk, M. C., IEEE Transactions on Electron Devices, Volume: 38 Issue: 3, March 1991 pp 476486 Google Scholar
[16] Borland, J. O., Semiconductor International, April 2000, pp7080 Google Scholar
[17] Adekoya, W. O., Hage-Ali, M., Muller, J.C., Stiffert, P., J. Appl. Phys. 64 (2) 1988, p666 Google Scholar
[18] Osburn, C. M., Downey, D. F., Felch, S. B., Lee, B. S., Ion implantation Tech. 1996, p832 Google Scholar
[19] Tsuji, K., Takeuchi, K., Mogami, T., IEDM Tech Dig 1999, p9 Google Scholar
[20] Kuznetsov, V. I., Storm, A.B., Snijders, G. J., Ridder, C. de, Ruijl, T. A. M., Sanden, J.C.G vd, Granneman, E.H.A, 197th Meeting of Elect. Chem. Soc May 14-18th 2000, p1 Google Scholar
[21] Clarysse, T., Vanhaeren, D., Vanderworst, W., J. Vac. Sci. Tech B 20(1) 2002, p459 Google Scholar
[22] Agarwal, A., Fiory, A. T., Gossmann, H.J., Rafferty, C., Frisella, P., Hebb, J., Jackson, J., Ion Implantation Technology Proceedings, 1998, Volume: 1, pp2225 Google Scholar
[23] Liebert, R. B., Walther, S. R., Felch, S. B., Fang, Ziwei; Koo, Bon-Woong, Hacker, D., The first international workshop on Junction Technology, 2000, p2327 Google Scholar
[24] Shenjun, Z. Berg, J. A. V. D, Armour, D. G., Whelan, S., Goldberg, R. G., Bailey, P., Noakes, T. C. Q., Ion Implantation Technology, 2000, pp119122 Google Scholar
[25] Banisaukas, H., Jones, K., Talwar, S., Downey, D. F., Falk, S., Mat. Sci. Semi. Proc. 4 (2001), p339343 Google Scholar
[26] Robertson, L. S., PhD Thesis, University of Florida 2001 Google Scholar