Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T02:27:46.628Z Has data issue: false hasContentIssue false

Optically Induced Paramagnetism in Amorphous Hydrogenated Silicon Nitride Thin Films

Published online by Cambridge University Press:  25 February 2011

W. L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. Kanicki
Affiliation:
lBM T. J. Watson Research Center, Yorktown Height NY 10598
F. C. Rong
Affiliation:
Electronics Technology and Devices Lab, Ft. Monmouth, NJ 07703
W. R. Buchwald
Affiliation:
Electronics Technology and Devices Lab, Ft. Monmouth, NJ 07703
M. Harmatz
Affiliation:
Electronics Technology and Devices Lab, Ft. Monmouth, NJ 07703
Get access

Abstract

The creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins is electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Shimizu, T., Kidoh, H., Morimoto, A., and Kumeda, M., Jpn. J. Appl. Phys., 28, 586 (1989).CrossRefGoogle Scholar
2) Lenahan, P. M., Krick, D. T., and Kanicki, J., Appl. Surf. Sci., 39, 392 (1989).CrossRefGoogle Scholar
3) Kanicki, J., Warren, W. L., Seager, C. H., Crowder, M. S. and Lenahan, P. M., J. Non-Cryst. Solids, in press.Google Scholar
4) Robertson, J., Phil. Mag B 63, 47 (1991).CrossRefGoogle Scholar
5) Kanicki, J., Sankaran, M., Gelatos, A., Crowder, M. S., and Tober, E. D., Appl. Phys. Lett., 57, 698 (1990).CrossRefGoogle Scholar
6) Warren, W. L., Kanicki, J., Rong, F. C., and Poindexter, E. H., J. Electrochem. Soc., (1992) in press.Google Scholar
7) Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar
8) Bishop, S. G., Strom, U., and Taylor, P. C., Phys. Rev. B 15, 2278 (1977).CrossRefGoogle Scholar
9) Warren, W. L., Kanicki, J., Robertson, J., and Lenahan, P. M., Appl. Phys. Lett., 59, 1699 (1991).CrossRefGoogle Scholar
10) Jousse, D., Kanicki, J., Krick, D. T. and Lenahan, P. M., Appl Phys. Lett., 52, 445 (1988).CrossRefGoogle Scholar
ll) Hasegawa, S., Matsuda, M., and Kurata, Y., Appl. Phys. Lett., 58, 741 (1991).CrossRefGoogle Scholar
12) Ishii, N., Oozora, S., Kumeda, M., and Shimizu, T., Phys. Status Solidi B 114, K111 (1982).CrossRefGoogle Scholar
13) Yin, Z. and Smith, F. W., Phys. Rev. B 42, 3666 (1990).CrossRefGoogle Scholar
14) Trukhin, A. N., Phys. Status Solidi B 98, 541 (1980).CrossRefGoogle Scholar
15) Jousse, D., and Kanicki, J., Appl. Phys. Lett., 55, 1112 (1989).CrossRefGoogle Scholar
16) Kakalios, J., Street, R. A., and Jackson, W. B., Phys. Rev. Lett., 59, 1037 (1987).CrossRefGoogle Scholar
17) Warren, W. L., Lenahan, P. M., and Kanicki, J., J. Appl. Phys., 70, 2220 (1991).CrossRefGoogle Scholar