Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-65n5b Total loading time: 0.163 Render date: 2021-06-15T08:29:33.701Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Optical gain and stimulated emission in silicon nanocrystals

Published online by Cambridge University Press:  11 February 2011

L. Dal Negro
Affiliation:
INFM-Dipartimento di Fisica, via Sommarie 14, Università di Trento, I-38050 Povo (Trento), Italy
M. Cazzanelli
Affiliation:
INFM-Dipartimento di Fisica, via Sommarie 14, Università di Trento, I-38050 Povo (Trento), Italy
Z. Gaburro
Affiliation:
INFM-Dipartimento di Fisica, via Sommarie 14, Università di Trento, I-38050 Povo (Trento), Italy
P. Bettotti
Affiliation:
INFM-Dipartimento di Fisica, via Sommarie 14, Università di Trento, I-38050 Povo (Trento), Italy
L. Pavesi
Affiliation:
INFM-Dipartimento di Fisica, via Sommarie 14, Università di Trento, I-38050 Povo (Trento), Italy
D. Pacifici
Affiliation:
INFM-Dipartimento di Fisica, Università di Catania, I-95129 Catania
G. Franzò
Affiliation:
INFM-Dipartimento di Fisica, Università di Catania, I-95129 Catania
F. Priolo
Affiliation:
INFM-Dipartimento di Fisica, Università di Catania, I-95129 Catania
F. Iacona
Affiliation:
CNR-IMM, Sezione di Catania, I-95121 Catania, Italy
Get access

Abstract

Time-resolved luminescence measurements on silicon nanocrystal waveguides have revealed a fast recombination dynamics, related to population inversion which leads to net optical gain. The waveguide samples were obtained by thermal annealing of plasma enhanced chemical vapour deposited thin layers of silicon rich oxide Variable stripe length measurements performed on the fast emission signal have shown an exponential growth of the amplified spontaneous emission, with net gain values of about 10 cm-1. Both the fast component intensity and its temporal width revealed threshold behaviour as a function of the incident pump intensity. A modelling of the decay dynamics is suggested within an effective four level rate equation treatment including the delicate interplay among stimulated emission and Auger recombinations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

Ball, P., Nature 409, 974(2001).CrossRefGoogle Scholar
Towards the first silicon laser, edited by Pavesi, L., Gaponenko, S., Dal Negro, L., NATO Science Series (Kluwer Academic Publishers, Dordrecht 2003) in press.CrossRefGoogle Scholar
Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G., Priolo, F., Nature 408, 440 (2000).CrossRefGoogle Scholar
4. Khriachtchev, L., Rasanen, M., Novikov, S., Sinkkonen, J., Appl. Phys. Lett. 79, 1249 (2001).CrossRefGoogle Scholar
5. Nayfeh, M., Rao, S., Barry, N., Smith, A., Chaieb, S., Appl. Phys. Lett. 80, 121 (2002).CrossRefGoogle Scholar
6. Luterova, K. et al., J. Appl. Phys. 91, 2896 (2002).CrossRefGoogle Scholar
7. Malko, A.V. et al., Appl. Phys. Lett. 81, 1303, (2002)CrossRefGoogle Scholar
8. Klimov, V.I. et al., Science 290, 314, (2000)CrossRefGoogle Scholar
9. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C., Phys. Rev. Lett. 82, 197, (1999)CrossRefGoogle Scholar
10. Filonov, A.B., Ossicini, S., Bassani, F., Arnaud d'Avitaya, F., Phys. Rev. B 65, 195717, (2002)CrossRefGoogle Scholar
11. Iacona, F., Franzò, G., Spinella, C., J. Appl. Phys. 87, 1295 (2000).CrossRefGoogle Scholar
12. Shaklee, K. L., Nahaory, R. E., Leheny, R. F., J. Lumin. 7, 284 (1973).CrossRefGoogle Scholar
13. Dal Negro, L. et al., Physica E (2003), in pressGoogle Scholar
14. Valenta, J., Pelant, I., Linnros, J., Appl. Phys. Lett. 81, 1396 (2002).CrossRefGoogle Scholar
15. Milonni, P. W., Eberly, J. H., “Lasers”, John Wiley & Sons, New York 1988.Google Scholar
16. Delerue, C., Lannoo, M., Allan, G., Phys. Rev. Lett. 75, 2228, (1995).CrossRefGoogle Scholar
17. M'ghaieth, R., Maaref, H., Mihalcescu, I., Vial, J.C., Phys. Rev. B 60, 4450, (1999).CrossRefGoogle Scholar
18. Mikhailovsky, A. A., Malko, A. V., Hollingsworth, J. A., Bawendi, M. G., Klimov, V. I., Appl. Phys. Lett. 80, 2380, (2002)CrossRefGoogle Scholar
19. Daldosso, N. et al., Physica E (2003) in press, M. Luppi, S. Ossicini, phys. stat. sol. (a) (2003) in press.Google Scholar
20. Caldas, M., phys. stat. sol. (b), 217, 641 (2000).3.0.CO;2-Z>CrossRefGoogle Scholar
21. Puzder, A., Williamson, A. J., Grossman, J. C., Galli, G., Phys. Rev. Lett., 88, 097401 (2002).CrossRefGoogle Scholar
22. Zhou, F., Head, J.D., J. Phys. Chem. B, 104, 9981, (2000).CrossRefGoogle Scholar
23. Baierle, R.J., Caldas, M.J., Molinari, E., Ossicini, S., Solid State Comm, 102, 545, (1997).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optical gain and stimulated emission in silicon nanocrystals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optical gain and stimulated emission in silicon nanocrystals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optical gain and stimulated emission in silicon nanocrystals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *