Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T10:22:01.008Z Has data issue: false hasContentIssue false

Optical Characterization of Buried Ingaas/GaAs Wires Overgrown by MBE

Published online by Cambridge University Press:  21 February 2011

K. Pieger
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
J. Straka
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Ch. Gréus
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
A. Forchel
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Get access

Abstract

We have prepared buried InGaAs/GaAs wires by high resolution electron beam lithography, wet chemical etching and subsequent MBE overgrowth. Wires with lateral widths of less than 40nm have been realized.

For optimized regrowth conditions such as growth temperature, growth rate, III/V ratio, and arsenic flux a smooth surface morphology of the 100nm thick overgrown (Al)GaAs layer is obtained.

Etched only ultra narrow wires show a decrease of radiative recombination due to process induced defects and surface recombination at the open sidewalls. Optical investigations of narrow overgrown wires show a significant enhancement (up to two orders of magnitude) of the photoluminescence intensity. This is due to the disappearance of the open sidewalls and carrier capture from the overgrown barrier.

From studies of the influence of the crystallographic orientation on the quantum efficiency we find, that <111>B surfaces of the <011> wires offer the best conditions for MBE overgrowth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Naganume, Y., Arakawa, Y., Tsukamoto, S., Nishioka, M., Sasaki, S., Miura, N., Phys. Rev. Lett. 69, 2963(1992)Google Scholar
2 Marti, U., Proctor, M., Martin, D., Mourier-Genould, F., Senior, B., Reinhard, F. K., Microelectronic Eng. 13, 391 (1991)Google Scholar
3 Hämisch, Y., Steffen, R., Oshinowo, J., Forchel, A., Röntgen, P., Vac, J.. Sci. Technol. B 10, 2864 (1992)Google Scholar
4 Itoh, M., Honda, T., Tsubaki, K., Jap. Jour. Appl. Phys. 30, pp. 2455 (1991)Google Scholar
5 Bickl, Th., Jacobs, B., Forchel, A., Röntgen, P., Gyuro, I., Speier, P., Zielinski, E., Inst. Phys. Conf. Ser. 129, pp. 933 (1992)Google Scholar
6 Schmidt, A., Forchel, A., Straka, J., Gyuro, I., Speier, P., Zielinski, E., Vac, J.. Sci. Technol. B 10, pp. 2896 (1992)Google Scholar
7 Notomi, M., Naganuma, M., Nishida, T., Tamamura, T., Iwamura, H., Nojima, S.,. Okamoto, M., Appl. Phys. Lett. 58, pp. 720 (1991)CrossRefGoogle Scholar
8 Clausen, E. M. Jr., Craighead, H.G., Worlock, J:M., Harbison, J.P., Schiavone, L.M., Florez, L., Van der Gaag, B., Appl. Phys. Lett. 55, 1427 (1989)Google Scholar
9 Adachi, S., Oe, K., J. Electrochem. Soc., 130, 2427 (1983)Google Scholar
10 Dreybrodt, J., Forchel, A., Reithmaier, J.P., Phys Rev B, (1993) in printGoogle Scholar
11 Gréus, Ch., Forchel, A., Straka, J., Pieger, K., Emmerling, M., Appl. Phys. Lett 61, 1199 (1992)Google Scholar