Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-16T14:44:10.608Z Has data issue: false hasContentIssue false

Optical and Structural Characterization of Zinc Implanted Silica Under Various Thermal Treatments

Published online by Cambridge University Press:  03 September 2012

R. Mu
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN
Jinli Chen
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN
Z. Y. Gu
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN
A. Ueda
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN
Y. -S. Tung
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN
D. O. Henderson
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN
Jane G. Zhu
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN
John D. Budai
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN
Get access

Abstract

Zinc ion implanted silica with controlled thermal annealing has been investigated. Low temperature optical measurements indicate the presence of Zn clusters in the as-implanted silica. Optical spectra of the annealed sample under a reducing environment suggest Zn cluster and Zn metal colloid formation. The absorption peak at ∼5.3 eV may be due to the surface plasma absorption of Zn metal colloids in silica. The oxidized samples (10 and 6 x 1016 ions/cm2) show an absorption peak at ∼4.3 and ∼4.8 eV, respectively and imply ZnO quantum dot formation. The blueshift in exciton absorption can be attributed to the quantum confinement effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. for example: Siegel, R. W., IV International Conference on Advanced Materials, IUMRSICAM 95, Cancun Mexico, Aug. 27 - Sept. 1995.Google Scholar
2. Ritter, M.B., Awschlam, D.D., Shafer, W.M., Phys. Rev. Lett. 61, 966 (1988); J. Warnock, D.D. Awschalom, M.W. Shafer, Phys. Rev. Lett. 57, 1753 (1986); R. Mu, F. Jin, S.H. Morgan, D.O. Henderson and E. Silberman, J. Chem. Phys. 100, 7749 (1994); R. Mu and V.M. Malhotra, 44, 4296 (1991).Google Scholar
3. Mu, R., Xue, Y. and Henderson, D.O., Phys. Rev. B 53, 6041 (1996); R. Mu, Y.S. Tung, A. Ueda and D.O. Henderson, J. Phys. Chem. [in print] (1997).Google Scholar
4. Mulvaney, P., Langmuir 12, 788 (1996).Google Scholar
5. Perenboom, J.A.A.J., Wyder, P. and Meier, F., Phys. Rep. 78, 173 (1981).Google Scholar
6. Hayashi, S., Jpn. J. Appl. Phys. 23, 665 (1984), and references therein.Google Scholar
7. White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Hembree, D.M. Jr., Henderson, D.O., Ueda, A., Tung, Y.S., Mu, R., Magruder, R.H., J. Appl. Phys. 79, 1876 (1996); R. Mu, D.O. Henderson, Y.S. Tung, A. Ueda, C. Hall, W.E. Collins, C.W. White, R.A. Zuhr and Jane G. Zhu, J. Vac. Sci. Technol. A 14, 1482 (1996).Google Scholar
8. Bahnemann, D.W., Kormann, C. and Hoffmann, M.R., J. Phys. Chem. 91, 3789 (1987).Google Scholar
9. Haase, M., Weller, H. and Henglein, A., J. Phys. Chem. 92, 482 (1988), and references therein.Google Scholar
10. Mahamuni, S., Bendre, B.S., Leppert, V.J., Smith, C.A., Cooke, D., Risbud, S.H. and Lee, H.W.H., NanoStru. Mat. 7, 659 (1996).Google Scholar
11. Weeks, R. A., in Glasses andAmorphous Materials, edited by Zarzicki, J., Chap. 6 pp311373 (Wiley, New York, 1992); S. Y. Park, R. A. Weeks, and R. A. Zuhr, J. Appl. Phys. 77, 6100 (1995).Google Scholar
12. Henderson, D. O., George, M. A., Tung, Y. S., Mu, R., Burger, A., Morgan, S. H., Collins, W. E., White, C. W., Zuhr, R. A., and IIIMagruder, R. H., J. Vac. Sci. Technol. A 13, 1254 (1995); D. O. Henderson, S. H. Morgan, R. Mu, W. E. Collins, R. H. Magruder, C. W. White, and R. A. Zuhr, Mat. Res. Soc. Symp. Proc. 316, 451 (1994).Google Scholar
13. Hosono, H., J. Appl. Phys. 69, 8079 (1990); R. A. B. Devine, J. Non-cryst. Solids 152, 50 (1992).Google Scholar
14. Schroder, W., Wiggenhauser, H., Schrittenlacher, W. and Kolb, D.M., J. Chem. Phys. 86, 1147 (1987).Google Scholar
15. Creighton, J. A. and Eadon, D. G., J. Chem. Soc. Faraday Trans. 87, 3881 (1991).Google Scholar
16. Redmond, G., O'Keeffe, A., Burgess, C., MacHale, C. and Fitzmaurice, D., J. Phys. Chem. 97, 11081 (1993).Google Scholar
17. Ekimov, A. I., Efros, A. L., Onushchenko, A. A., Solid State Commun. 56, 921 (1985); L. E. Brus, J. Chem. Phys. 80, 4403 (1984).Google Scholar