Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T23:10:31.100Z Has data issue: false hasContentIssue false

Observation of Midgap States in GaN with Optical-Isothermal Capacitance Transient Spectroscopy

Published online by Cambridge University Press:  10 February 2011

P. Hacke
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezone, Tsukuba-shi 305 Japan
H. Miyoshi
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezone, Tsukuba-shi 305 Japan
K. Hiramatsu
Affiliation:
Nagoya University Dept. of Electronics Eng. Furo-cho, Chikusa-ku 464–01 Japan
H. Okumura
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezone, Tsukuba-shi 305 Japan
S. Yoshida
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezone, Tsukuba-shi 305 Japan
H. Okushi
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezone, Tsukuba-shi 305 Japan
Get access

Abstract

Optical-isothermal capacitance transient spectroscopy (O-ICTS) was used to distinguish the deep levels which occur in unintentionally doped n-type GaN by means of their characteristic optical cross section. GaN grown by metalorganic vapor phase epitaxy (MOVPE) and hydride vapor phase epitaxy (HVPE) were compared. Correspondence between optical and thermal emission characteristics of previously discovered levels, E2 (∼Ec-0.55 eV) and E4 (∼EC-1.0 eV), were clearly determined by observing their sequential appearance in the ICTS spectra. Whether by thermal or optical stimulation, the emission from E4 was found to be broad in nature; it is consequently believed to involve a defect. The total measured concentration of deep levels, including a prominent level which photoionizes in the range 2.5 to 3.0 eV below the conduction band, is greater in the GaN grown by MOVPE than by HVPE that was tested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Götz, W., Johnson, N. M., Amano, H. and Akasaki, I., Appl. Phys. Lett. 65, 463 (1994).Google Scholar
2 Hacke, P., Detchprohm, T., Hiramatsu, K., Sawaki, N., Tadatomo, K. and Miyake, K., J. Appl. Phys. 76, 304 (1994).Google Scholar
3 Hacke, P., Maekawa, A., Koide, N., Hiramatsu, K., and Sawaki, N., Jpn. J. Appl. Phys. 33, 6443 (1994).Google Scholar
4 Lee, W. I., Huang, T. C., Guo, J. D., and Feng, M. S., Appl. Phys. Lett. 67, 1721 (1995).Google Scholar
5 Haase, D., Schmid, M., Kiirner, W., Dornen, A., Harle, V., Scholz, F., Burkard, M., and Schweizer, H., Appl. Phys. Lett. 69, 2525 (1996).Google Scholar
6 Götz, W., Johnson, N. M., Bour, D. P., Chen, C., Liu, H., Kuo, C., and Imler, W. in GaN and Related Mat (Mater. Res. Soc. Proc. 395).Google Scholar
7 Hacke, P., Nakayama, H., Detchprohm, T, Hiramatsu, K., and Sawaki, N. in Proceedings of the International Symposium on Blue Laser and Light Emitting Diodes, (Ohmsha, Tokyo, 1996) p.184187.Google Scholar
8 Gotz, W., Johnson, N. M., Street, R. A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66, 1340 (1995).Google Scholar
9 Sanchez, F. J., et. al. MRS Internet Journal Nitride Semiconductor Research 1 (7) 1996.Google Scholar
10 Kennedy, T. A., Glaser, E. R., Freitas, J. A. Jr, Carlos, W.E., Asif Khanand, M. and Wickenden, D. K., J. Electronic Mat. 24, 219 (1995).Google Scholar
11 Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 19, 2395 (1980).Google Scholar
12 Perlin, P., Suski, T., Tiesseyre, H., Leszczynski, M., Grzegory, I, Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A. and Moustakas, T. D., Phys. Rev. Lett. 75, 296 (1995).Google Scholar
13 Hofmann, D. M., Kovalev, D., Steude, G., Meyer, B. K., Hoffmann, A., Eckey, L., Heitz, R., Detchprohm, T., Amano, H. and Akasaki, I.. Phys. Rev. B, 52, 16702 (1995).Google Scholar
14 Neugebauer, J. and Van de Walle, C. G., Phys. Rev. B 50, 8067 (1994)Google Scholar
15 Mattila, T., Seitsonen, A. P. and Nieminen, R. M., Phys. Rev. B. 54, 1474 (1996).Google Scholar
16 Pancove, J. I. and Hutchby, J. A, J. Appl. Phys, 47, 5387 (1976).Google Scholar
17 Ponce, F. A., Bour, D. P., Gotz, W. and Wright, P. J., Appl. Phys. Lett. 68, 57 (1996).Google Scholar
18 Monemar, B., Bergman, J. P., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K., and Sawaki, N., in Proceedings of the International Symposium on Blue Laser and Light Emitting Diodes, (Ohmsha, Tokyo, 1996) pp. 135140.Google Scholar
19 Hiramatsu, K., Detchprohm, T., Akasaki, I., Jpn. J. Appl. Phys. 32, 1528 (1993).Google Scholar
20 Gotz, W., Romano, L. T., Krusor, B. S., Johnson, N. M., and Molnar, R. J., Appl. Phys. Lett. 69, 242 (1996).Google Scholar
21 Fertitta, K. G., Holmes, A. L., Ciuba, F. J., Dupuis, R. D., and Ponce, F. A., J. Electronics Materials 24, 257 (1995).Google Scholar
22 Detchprohm, T., Hiramatsu, K., Amano, H. and Akasaki, I., Appl. Phys. Lett. 61, 2688 (1992)Google Scholar
23 Okushi, H. and Tokumaru, Y., Jpn. J. Appl. Phys. 20 (suppl. 20–1) 261 (1981).Google Scholar
24 Okushi, H. and Tokumaru, Y. and Naka, H., Semicond. Sci. Techno. 7, A196 (1992).Google Scholar
25 Okushi, H., Phil. Magazine B, 52, 33 (1985).Google Scholar
26 Kiyota, H., Okushi, H., Okano, K., Akiba, Y., Kurosu, T. and Iida, M., Appl. Phys. Lett. 61, 1808 (1992).Google Scholar
27 Gotz, W., Johnson, N. M., Bremster, M. D. and Davis, R. F., Appl. Phys. Lett. 69, 2379 (1996).Google Scholar
28 Yi, G. C. and Wessels, B. W., Appl. Phys. Lett. 86, 3769 (1996).Google Scholar
29 Kuroda, T., Master Thesis (Nagoya University, 1995) in Japanese.Google Scholar