Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-09T07:14:38.217Z Has data issue: false hasContentIssue false

Nucleation and Growth Processes During the Chemical Vapor Deposition of Diamond

Published online by Cambridge University Press:  15 February 2011

Yaxin Wang
Affiliation:
Chemical Engineering Dept., Case Western Reserve University, Cleveland, OH 44106–7217
Edward A. Evans
Affiliation:
Chemical Engineering Dept., Case Western Reserve University, Cleveland, OH 44106–7217
Christopher S. Kovach
Affiliation:
Chemical Engineering Dept., Case Western Reserve University, Cleveland, OH 44106–7217
Uziel Landau
Affiliation:
Chemical Engineering Dept., Case Western Reserve University, Cleveland, OH 44106–7217
John C. Angus
Affiliation:
Chemical Engineering Dept., Case Western Reserve University, Cleveland, OH 44106–7217
Get access

Abstract

In situ microbalance measurements of diamond growth rates are described. These results can be used to test proposed mechanisms for diamond growth and suggest mechanisms for sp2 impurity incorporation. The Thiele modulus is a simple criterion for growth uniformity and is used to compare hot-filament and combustion-assisted growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tamor, M. and Everson, M.P., J. Mater. Res. 7, 1839 (1994).10.1557/JMR.1994.1839Google Scholar
[2] Wild, C., Kohl, R., Herres, N., Muller-Sebert, W. and Koidl, P., Diamond and Related Materials 3, 373 (1994).10.1016/0925-9635(94)90188-0Google Scholar
[3] Angus, J.C., Sunkara, M., Sahaida, S.R. and Glass, J.T., J. Mater. Res. 7, 3001 (1992).10.1557/JMR.1992.3001Google Scholar
[4] Ravi, K., J. Mater. Res. 7, 384 (1992).10.1557/JMR.1992.0384Google Scholar
[5] Kovach, C.S., Roozbehani, B., Suzuki, T. and Angus, J.C., Proc. 2nd Int. Conf. on the Applications of Diamond Films and Related Materials, Yoshikawa, M., Murakawa, M., Tzeng, Y. and Yarbrough, W.A., Eds., MYU, Tokyo, 1993.Google Scholar
[6] Angus, J.C., Li, Z., Sunkara, M., Lee, C., Lambrecht, W.R.L. and Segall, B., in Diamond Materials, Dismukes, J.P. and Ravi, K.V., Eds., Proceedings Volume 93–17, Electrochemical Society, Pennington, NJ (1993), pp. 128137.Google Scholar
[7] Lambrecht, W.R.L., Lee, C.H., Segall, B., Angus, J.C., Li, Z. and Sunkara, M., Nature 364, 607 (1993).10.1038/364607a0Google Scholar
[8] Li, Z., Wang, L., Suzuki, T., Argoitia, A., Pirouz, P. and Angus, J.C., J. Appl. Phys. 73, 711 (1992).10.1063/1.353327Google Scholar
[9] Butler, J.E., Phil. Trans. A 342, 209 (1993).Google Scholar
[10] Harris, S.J. and Goodwin, D.G., J Phys. Chem. 97, 23 (1993).10.1021/j100103a007Google Scholar
[11] Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991).10.1103/PhysRevB.43.1520Google Scholar
[12] Kim, J.S. and Capelli, M.A., J. Appl. Phys. 72, 5461 (1992).10.1063/1.351989Google Scholar
[13] Wu, B.W. and Girschick, S.L., J. Appl. Phys. 75, 3914 (1994).Google Scholar
[14] Angus, J.C., Argoitia, A., Gat, R., Li, Z., Sunkara, M., Wang, L. and Wang, Y., Phil. Trans. Roy. Soc. A 342, 195 (1992).Google Scholar
[15] Goodwin, D.G., J. Appl. Phys. 74, 6888 (1993).10.1063/1.355063Google Scholar
[16] Chauhan, S.P., Angus, J.C. and Gardner, N.C., J. Appl. Phys. 47, 4746 (1976).10.1063/1.322531Google Scholar
[17] Fedoseev, D.V. and Deryagin, B.V., Zh. Fiz. Khimii 53, 752 (1979).Google Scholar
[18] Harris, S.J. and Weiner, A.M., J. Appl. Phys. 70, 1385 (1991).10.1063/1.349546Google Scholar
[19] Wang, Y. and Angus, J.C., Proc. 3rd Symposium on Diamond Materials, Proc. Vol. 93–17, Electrochemical Society, Pennington, NJ (1993), pp. 249–255.Google Scholar
[20] Wang, Y., Evans, E.A., Zeatoun, L. and Angus, J.C., Proc. Third IUMRS Int. Conf. on Adv. Materials, Wakatsuki, M. et al. , Eds., Nikkam Kogyo Shimbum, Ltd., Tokyo (1993).Google Scholar
[21] Chu, C.J., Hauge, R.H., Margrave, J.L. and D'Evelyn, M.P., Appl. Phys. Lett. 61, 1393 (1992).10.1063/1.107548Google Scholar
[22] Stoner, B.R., Williams, B.E., Wolter, S.D., Glass, J.T., J. Mater. Res. 7, 257 (1992).10.1557/JMR.1992.0257Google Scholar
[23] Evans, E.A., MS Thesis, Case Western Reserve University, Cleveland, OH, 1994.Google Scholar
[24] Bachmann, P.K., Leers, D. and Lydtin, H., Diamond and Related Materials 1, 1 (1991).10.1016/0925-9635(91)90005-UGoogle Scholar
[25] Prijaya, N., Angus, J.C. and Bachmann, P.K., Diamond and Related Materials 3, 129 (1993).10.1016/0925-9635(94)90044-2Google Scholar
[26] Chu, C.J., Bai, G.J., D'Evelyn, M.P., Hauge, R. H. and Margrave, J.L., in Diamond, Silicon Carbide and Related Wide Band Gap Semiconductors, Glass, J.T., Messier, R., and Fujimori, N., Eds., Mater. Res. Symp. Proc. 162, Pittsburgh, PA, 1990, pp. 8590.Google Scholar
[27] Angus, J.C. and Evans, E.A., Proc. Materials Res. Soc. Meeting, San Francisco, CA, April 4–8, 1994.Google Scholar
[28] Palmer, B.J. and Gordon, R.G., Thin Solid Films 158, 313 (1988).10.1016/0040-6090(88)90034-XGoogle Scholar
[29] Sekerka, R.F., J. Cryst. Growth 128,1 (1993).10.1016/0022-0248(93)90288-8Google Scholar
[30] CELL DESIGN, L-Chem. Inc., PO Box 20003, Shaker Heights, OH, 44120, USA.Google Scholar