Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T13:29:45.487Z Has data issue: false hasContentIssue false

Nuclear Spin Relaxation Investigations on the Influence of Impurities and Temperature on the Mean Free Path of Mobile Dislocations in Nacl

Published online by Cambridge University Press:  15 February 2011

W. H. M. Alsem
Affiliation:
Dept. of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands
J. Th.
Affiliation:
Dept. of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands
M. De Hosson
Affiliation:
Dept. of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands
H. Tamler
Affiliation:
Institute of Physics, University of Dortmund, Postfach 50 05 00, 46 Dortmund 50, W. Germany
H. J. HackelÖEr
Affiliation:
Institute of Physics, University of Dortmund, Postfach 50 05 00, 46 Dortmund 50, W. Germany
O. Kanert
Affiliation:
Institute of Physics, University of Dortmund, Postfach 50 05 00, 46 Dortmund 50, W. Germany
Get access

Abstract

Dislocation motion in alkali halide single crystals is strongly impeded by the presence of impurities, apart from obstacles built by the forest dislocations. The mean free path L of stepwise moving dislocations is measured by determination of the spin-lattice relaxation rate 1/T as a function of the strain rate έ, varying the content of impurities and the temperature. The latter influences the distribution of the point defects and the activation rate of dislocations before obstacles, while the former merely shorten L, thereby raising 1/T.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kocks, U. F., Argon, A. S., Ashby, M. F., Thermodynamics and Kinetics of Slip, Progr. in Mat. Sci. 19, Pergamon Press (1975).Google Scholar
2. Berg, G., Fröhlich, F., Siebenhühner, S., Phys. Stat. Sol. (a) 31, 385 (1975).CrossRefGoogle Scholar
3. Alsem, W. H. M., Faraday Symp. of the Chem. Soc. 13, London (1978) 193.Google Scholar
4. Alsem, W. H. M., Sleeswyk, A. W., Hackelöer, H. J., Münter, R., Tamler, H., Kanert, O., J. de Physique – Paris, C6–146 (1980).Google Scholar
5. Alsem, W. H. M., Th., J., de Hosson, M., Tamler, H., Hackelöer, H. J., Kanert, O., to be published in Solid State Comm. (1980).Google Scholar
6. Wolf, D., Kanert, O., Phys. Rev. B 16, 4776 (1977).CrossRefGoogle Scholar
7. Dreyfus, R. W., Nowick, A. S., Phys. Rev. 126, 1367 (1962).CrossRefGoogle Scholar
8. Crawford, J. H. Jr., J. Phys. Chem. Solids 31, 399 (1970).Google Scholar
9. Dubiel, M., Berg, G., Fröhlich, F., Phys. Stat. Sol. (b) 89, 595 (1978).CrossRefGoogle Scholar