Hostname: page-component-6d856f89d9-5pczc Total loading time: 0 Render date: 2024-07-16T08:26:17.166Z Has data issue: false hasContentIssue false

Nuclear Magnetic Resonance (NMR) of Porous Silicon

Published online by Cambridge University Press:  15 February 2011

W. K. Chang
Affiliation:
Department of Chemical Engineering, MIT, Cambridge MA 02139, kkgleasn@mit.edu
M. Y. Liao
Affiliation:
Department of Chemical Engineering, MIT, Cambridge MA 02139, kkgleasn@mit.edu
K. K. Gleason
Affiliation:
Department of Chemical Engineering, MIT, Cambridge MA 02139, kkgleasn@mit.edu
Get access

Abstract

Porous silicon (PS) was characterized by 1H, 19F and 29Si solid-state nuclear magnetic resonance (NMR). On freshly prepared samples, hydrogen contents were between 3 × 1014 and 3 × 1015 per cm2 of PS surface area, while fluorine concentrations were below the detection limit. Cross-polarization (CP) was used to selectively observe the 29Si near the hydrogen passivation. The features of the 29Si NMR spectra are assigned as (O)2(Si)Si-H (-50 ppm), (O)3Si-H (-84 ppm), (Si)3Si-H (-91 ppm), (Si)2Si-H2 (-102 ppm) and (O)4Si (-109 ppm). Changes resulting from low temperature annealing in air and an HF soak were observed by both NMR and infrared spectroscopy. The 29Si NMR line widths for PS fall between those for crystalline silicon and those for amorphous hydrogenated silicon films (a-Si:H), suggesting disorder near the PS surface is intermediate between these extremes. However, comparison of the isotropie chemical shift values shows that the bonding in the disordered regions of PS differs from that found in a-Si:H. In addition, the sharp 29Si NMR resonance observed in the bulk single crystal starting material can not be resolved in the spectra of PS. Thus, well-ordered silicon nanocrystallites in the PS are either several bond-lengths removed from hydrogen or comprise only a small fraction of the PS layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ito, T. and Hiraki, A., J. Lumin. 57, 331 (1993).Google Scholar
2.Maciel, G.E. “The Characterization of Silica Surfaces by NMR.” in Encyclopedia of NMR. edited by Grant, D.M. and Harris, R.K. (Wiley, New York, 1996).Google Scholar
3.Fyfe, C.A., Solid-state NMR for Chemists. (CFC Press, Guelph, Canada, 1983).Google Scholar
4.Borghesi, A., Guizzetti, G.G., Sassella, A., Bisi, O., and Pavesi, L., Solid State Comm. 89, 615 (1994).Google Scholar
5.Feng, Z.C., Wee, A.T.S., and Tan, K.L., J. Phys. D: Appl. Phys. 27, 1968 (1994).Google Scholar
6.Vázsonyi, É.B., Koós, M., Jalsovszky, G., Pócsik, I., Thin Solid Films 255, 121 (1995).Google Scholar
7.O'Keefe, P. and Aoyagi, Y., Appl. Phys. Lett. 66, 836 (1995).Google Scholar
8.Borghesi, A., Sassella, S., Pivac, B., Pavesi, L., Solid State Comm. 87, 1 (1993).Google Scholar
9.Ogata, Y., Niki, H., Sakka, T., and Iwasaki, M., J. Electrochem. Soc. 142, 195 (1995).Google Scholar
10.Gupta, P., Dillon, A.C., Bracker, A.S., and George, S.M.Surf. Sci. 245, 360 (1991).Google Scholar
11.Levy, D.H. and Gleason, K.K., J. Vac. Sci. Technol. A 11, 195 (1993).Google Scholar
12.Ookubo, N., Matsuda, Y., and Kuroda, N., Appl. Phys. Lett. 63, 346 (1993).Google Scholar
13.Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era: Volume 1 Process Technology (Lattice Press: Sunset Beach, California, 1996), p. 647.Google Scholar
14.Koch, F., Mat. Res. Soc. Symp. Proc. 298, 319 (1983).Google Scholar
15.Schuppler, S., et al. Phys. Rev. Lett. 72, 2648 (1994).Google Scholar
16.Zumbulyadis, N.J., Chem. Phys. 86, 1162 (1987).Google Scholar
17.Hayashi, S., Hayamizu, K., Yamasaki, A., Matsuda, A., and Tanaka, K., Phys. Rev. B 35, 4581 (1987).Google Scholar
18.Williams, E.A. and Cargiollia, J.D., Ann. Rep. NMR Spectres. 9, 221 (1962).Google Scholar
19.Jung, K.H., Shih, S., Kwong, D.L., Cho, C.C., and Gnade, B.E., Appl. Phys. Lett. 61, 2467 (1992).Google Scholar
20.Engelhardt, G. and Koller, H. in Solid-State NMR II, Inorganic Matter, vol. 31, edited by Blümlich, B. (Springer-Verlag, Berlin, 1994), pp. 131.Google Scholar
21.Cong, X.-D., Kirkpatrick, R.J., and Diamond, S., Cem. Concr. Res., 23, 811 (1993).Google Scholar
22.Reimer, J.A., Dubois Murphy, P., Gerstein, B.C., and Knights, J.C., J. Chem. Phys. 74, 1501 (1981).Google Scholar
23.Jeffrey, F.R., Dubois Murphy, P. and Gerstein, B.C., Phys. Rev. B 23, 2099 (1981).Google Scholar
24.Cheung, W.K. and Petrich, M.A. M.A., J. Appl. Phys. 73, 3237 (1993).Google Scholar
25.Shao, W.-L., Shinar, J., Gerstein, B.C., Li, F., Lannin, J.S., Phys. Rev. B 41, 9491 (1990).Google Scholar
26.Higashi, G.S., Chabel, Y.J., Trucks, G.W., Raghavachari, K.. Appl. Phys. Lett. 56, 656 (1990).Google Scholar