Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-j7tnp Total loading time: 0.261 Render date: 2021-08-01T15:30:38.731Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A New Method for Preparing Ge Nano-Crystallites Embedded in SiNY Matrices

Published online by Cambridge University Press:  28 February 2011

Kunji Chen
Affiliation:
Center for Advanced Studies in Science and Technology of Microstructures, Nanjing 210093, China
Xuexuan Qu
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
Xinfan Huang
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
Zhifeng Li
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
Duan Feng
Affiliation:
Center for Advanced Studies in Science and Technology of Microstructures, Nanjing 210093, China
Get access

Abstract

We report a new method for synthesizing Ge nano-crystallites embedded in SiNy film matrices. On the basis of the effect of the reactant precursors and preferential chemical bonding of Si-N and Ge-Ge, thin films with Ge clusters embedded in SiNy matrices have been prepared in the PECVD system with reactant gases of SiH4, GeH4 and NH3 mixed in the hydrogen plasma. The as-deposited films were then crystallized by Ar ion laser annealing or thermal annealing technique to form nanometer-sized Ge crystallites.

The composition and microstructures of these new type of sample were characterized by infrared absorption spectra, transmission electron microscopy, X-ray diffraction and Raman scattering spectra. The results indicated that the average size of Ge crystallites was estimated to be 2-20 nm depending on the deposition and annealing parameters and can be controlled by a designed manner.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brus, LE., Appl. Phys. A53, 465 (1991)CrossRefGoogle Scholar
2 Kayanuma, Y., Phys. Rev. B38, 9772 (1988)Google Scholar
3 Furukawa, S. and Miyasato, T., Phys Rev. B38, 5726 (1988)CrossRefGoogle Scholar
4 Lehmann, V. and Gosele, U., Appl Phys. Lett. 58, 856 (1991)CrossRefGoogle Scholar
5 Kanemitsu, Y., Uto, H. and Masumoto, y., Appl. Phys. Lett. 61, 2187 (1993)CrossRefGoogle Scholar
6 Hayashi, S., Tanimoto, S. and Yamamoto, K., J. Appl. Phys. 68, 5300 (1990)CrossRefGoogle Scholar
7 Okada, R. and Ijima, S., Appl. Phys. Lett. 58, 1662 (1991)CrossRefGoogle Scholar
8 Fujii, M., Hayashi, S. and Yamamoto, K., Appl. Phys. Lett. 57, 2692 (1990)CrossRefGoogle Scholar
9 Chen, K.J., Huang, X F., Xu, J. and Feng, D., Appl Phys. Lett. 61, 2069 (1992)CrossRefGoogle Scholar
10 Chen, K.J., Jiang, J.G, Huang, X.F., Li, Z.F., Qu, X.X., Du, J.F. and Feng, D., J. Non-Cryst. Solids 164166. 853 (1993)Google Scholar
11 Honma, I., Kawai, K., Komiyama, H. and Tanaka, K., Appl. Phys. Lett. 50, 276 (1987)CrossRefGoogle Scholar
12 Lifshits, I.M. and Slesov, V.V., Eksp, Zh.. Teor. Fiz. 35, 479 (1958)Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A New Method for Preparing Ge Nano-Crystallites Embedded in SiNY Matrices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A New Method for Preparing Ge Nano-Crystallites Embedded in SiNY Matrices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A New Method for Preparing Ge Nano-Crystallites Embedded in SiNY Matrices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *