Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-r6xbn Total loading time: 0.21 Render date: 2022-01-19T04:56:34.914Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

New Functional Magnetic Shape Memory Alloys from First-Principles Calculations

Published online by Cambridge University Press:  31 January 2011

Peter Entel
Affiliation:
entel@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Mario Siewert
Affiliation:
mario@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Antje Dannenberg
Affiliation:
antje@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Markus Ernst Gruner
Affiliation:
me@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Manfred Wuttig
Affiliation:
wuttig@umd.edu, University of Maryland, Department of Materials Science, College Park, Maryland, United States
Get access

Abstract

An overview is given of new ferromagnetic Heusler alloys like Ni-Co-(Al, Ga, Zn), Co-Ni-(Al, Ga, Zn), Fe-Ni-(Al, Ga, Zn) and Fe-Co-(Al, Ga, Zn), which are compared with today's mostly investigated systems such as Ni-Mn-Z (Z = Al, Ga, In, Sn, Sb). The investigations are based on first-principles as well as Monte Carlo calculations. For some new systems, the simulations of atomic structure and magnetic and electronic properties allow to predict higher Curie and martensitic transformation temperatures than those of prototypical Ni-Mn-Z materials. Some of the new materials may be distinguished for devices which exploit the magnetic shape memory effect. Interestingly, in general, all off-stoichiometric alloys display competing antiferromagnetic correlations, which may be important for devices using the magnetocaloric effect. The Curie temperatures are obtained from Monte Carlo simulations using magnetic exchange parameters from ab initio calculations while the structural instability is inferred from local minima in the ab initio total energy curves as a function of the tetragonal distortion. The manifestation of phonon softening as a precursor of structural transformations is present in the austenitic phase of most of the calculated ferromagnetic shape-memory alloys. However, quite remarkably, we find that phonon softening is absent in a few systems such as Co2NiGa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ullakko, K., Huang, J. K., Kantner, C., O'Handley, R. C. and Kokorin, V. V., Appl. Phys. Lett. 69, 1966 (1996)CrossRefGoogle Scholar
2 Ullakko, K., Huang, J. K., Kokorin, V. V. and O'Handley, R. C., Scr. Mater. 36, 1133 (1997).CrossRefGoogle Scholar
3 Sozinov, A., Likhachev, A. A., Lanska, N., Ullakko, K., Appl. Phys. Lett. 80, 1746 (2002).CrossRefGoogle Scholar
4 Tickle, R., James, R. D., Shield, T., Wuttig, M., and Kokorin, V. V., IEEE Trans. Magn. 35, 4301 (1999).CrossRefGoogle Scholar
5 O'Handley, R. C. and Allen, S. M., “Shape Memory Alloys, Magnetically Activated Ferromagnetic Shape Memory Materials”, Encyclopedia of Smart Materials, ed. Schwartz, M. (Wiley, 2001) pp. 936951.Google Scholar
6 Vasil'ev, A. N., Buchelnikov, V. D., Takagi, T., Khovailo, V. V. and Estrin, E. I., Phys.-Usp. 46, 559 (2003).CrossRefGoogle Scholar
7 Enkovaara, J., Ayuela, A., Zayak, T., Entel, P., Nordström, L., Dube, M., Jalkanen, J., Impola, J. and Nieminen, R. M., Mater. Sci. Eng. A 378, 52 (2004).CrossRefGoogle Scholar
8 Heczko, O., J. Magn. Magn. Mater. 290-291, 787 (2005).CrossRefGoogle Scholar
9 Söderberg, O., Ge, Y., Sozinov, A., Hannula, S.-P. and Lindros, V. K., “Giant Magnetostrictive Materials”, Handbook of Magnetic Materials, Vol. 16, ed. Buschow, K. H. J. (Elsevier, 2006) pp. 140.Google Scholar
10 Entel, P., Buchelnikov, V. D., Khovailo, V. V., Zayak, A. T., Adeagbo, W. A., Gruner, M. E., Herper, H. C. and Wassermann, E. F., J. Phys. D: Appl. Phys. 39, 865 (2006).CrossRefGoogle Scholar
11 Entel, P., Buchelnikov, V. D., Gruner, M. E., Hucht, A., Khovailo, V. V., Nayak, S. K. and Zayak, A. T., Mater. Sci. Forum 583, 21 (2008).CrossRefGoogle Scholar
12 Planes, A., Mañosa, L. and Acet, M., J. Phys: Condens. Matter 21, 233201 (2009).Google Scholar
13 Entel, P., Gruner, M. E., Dannenberg, A., Siewert, M., Nayak, S. K., Herper, H. C. and Buchelnikov, V. D., Mater. Sci. Forum 635, 3 (2010).CrossRefGoogle Scholar
14 Acet, M., Mañosa, Ll. and Planes, A., “Magnetic-Field Induced Modifications in Martensitic Heusler-based Alloys”, preprint submitted to Elsevier (2009).Google Scholar
15 O'Handley, R. C., J. Appl. Phys. 83, 3263 (1998).CrossRefGoogle Scholar
16 O'Handley, R. C., Murray, S. J., Marioni, M., Nembach, H., Allen, S. M., J. Appl. Phys. 87, 4712 (2000).CrossRefGoogle Scholar
17 Vassiliev, A., J. Magn. Magn. Mater. 242-245, 66 (2002).CrossRefGoogle Scholar
18 Otsuka, K. and Wayman, C. M., “Mechanism of Shape Memory Effect and Superelasticity”, Shape Memory Materials, ed. Otsuka, K. and Wayman, C. M. (Cambridge University Press, 1998) pp. 2748.Google Scholar
19 Kaufmann, S., Rößler, U. K., Heczko, O., Wuttig, M., Buschbeck, J., Schultz, L. and Fähler, S., arXiv:0906.5365.Google Scholar
20 Khachaturyan, A. G., Shapiro, S. M., and Semenovskaya, S., Phys. Rev. B 43 10832 (1991).CrossRefGoogle Scholar
21 Gruner, M. E., Entel, P., Opahle, I., and Richter, M., J. Mater. Sci. 43, 3825 (2008).CrossRefGoogle Scholar
22 Gruner, M. E. and Entel, P., J. Phys.: Condens. Matter 21, 293201 (2009).Google Scholar
23 Buschbeck, J., Niemann, R., Heczko, O., Thomas, M., Schultz, L. and Fähler, S., Acta Mater. 57, 2516 (2009).CrossRefGoogle Scholar
24 Conti, S., Lenz, M. and Rumpf, M., J. Mech. Phys. Solids 55, 1462 (2007).CrossRefGoogle Scholar
25 Nestler, B., Selzer, M. and Wendler, F., Phys. Rev. E 78, 011604 (2008).CrossRefGoogle Scholar
26 Conti, S., Lenz, M. and Rumpf, M., Mater. Sci. Eng. A 481-482, 351 (2008).CrossRefGoogle Scholar
27 Hume-Rothery, W., J. Inst. Met. 35, 295 (1926).Google Scholar
28 Aksoy, S., Acet, M., Wassermann, E. F., Krenke, T., Moya, X., Mañosa, L., Planes, A. and Deen, P., Phil. Mag. 89, 2093 (2009).CrossRefGoogle Scholar
29 Khovailo, V. V., Novosad, V., Takagi, T., Filippov, D. A., Levitin, R. Z. and Vasil'ev, A., Phys. Rev. B 70, 174413 (2004).CrossRefGoogle Scholar
30 Filippov, D. A., Khovailo, V. V., Koledov, V. V., Krasnoperov, E. P., Levitin, R. Z., Shavrov, V. G. and Takagi, T., J. Magn. Magn. Mater. 258, 507 (2003).CrossRefGoogle Scholar
31 Kim, J. H., Inaba, F., Fukuda, T. and Kakeshita, T., Acta Mater. 54, 493 (2006).CrossRefGoogle Scholar
32 Jeong, S., Inoue, K., Inoue, S., Koterazawa, K., Taya, M. and Inoue, K., Mater. Sci. Eng. A 359, 253 (2003).CrossRefGoogle Scholar
33 Krenke, T., Duman, E., Acet, M., Wassermann, E. F., Moya, X., Mañosa, L., Planes, A., Suard, E. and Ouladdiaf, B., Phys. Rev. B 75, 104414 (2007).CrossRefGoogle Scholar
34 Khan, M., Dubenko, I., Stadler, S. and Ali, N., J. Phys.: Condens. Matter 20, 235204 (2008).Google Scholar
35 Castan, T., Vives, E. and Lindgard, P. A., Phys. Rev. B 60, 7071 (1999).CrossRefGoogle Scholar
36 Buchelnikov, V. D., Entel, P., Taskaev, S. V., Sokolovsky, V. V., Hucht, A., Ogura, M., Akai, H., Gruner, M. E. and Nayak, S. K., Phys. Rev. B 78, 184427 (2008).CrossRefGoogle Scholar
37 Buchelnikov, V. D., Sokolovsky, V. V., Herper, H. C., Ebert, H., Gruner, M. E., Taskaev, S. V., Khovaylo, V. V., Hucht, A., Dannenberg, A., Ogura, M., Akai, H., Acet, M. and Entel, P., submitted to Phys. Rev. B (2009).Google Scholar
38 Kushida, H., Hata, K., Fukuda, T., Terai, T. and Kakeshita, T., Scripta Mater. 60, 96 (2009).CrossRefGoogle Scholar
39 Kakeshita, T., Terai, T., Yamamoto, M. and Fukuda, T., EDP Sciences, Proc. ESOMAT 2009, 04008 (2009).Google Scholar
40 Zheludev, A., Shapiro, S. M., Wochner, P., Schwarz, A., Wall, M. and Tanner, L. E., Phys. Rev. B 51, 11310 (1995).CrossRefGoogle Scholar
41 Planes, A., Obrado, E., Comas, A. G. and Mañosa, L., Phys. Rev. Lett. 79, 3926 (1997).CrossRefGoogle Scholar
42 Karaka, H. E., Karaman, I., Basaran, B., Lagoudas, D. C., Chumlyakov, Y. I. and Maier, H. J., Acta Mater. 55, 4253 (2007).CrossRefGoogle Scholar
43 Karaca, H. E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y. I. and Maier, H. J., Adv. Funct. Mater. 19, 983 (2009).CrossRefGoogle Scholar
44 Jaggi, N. K., Rao, K. R. M., Grover, A. K., Gupta, L. C., Vijayaraghavan, R. and Khoi, Le D., Hyperfine Interactions 4, 402 (1978).CrossRefGoogle Scholar
45 Brown, P. J., Bargawi, A. Y., Crangle, J., Neumann, K.-U. and Ziebeck, K. R. A., J. Phys.: Condens. Matter 11, 4715 (1999).Google Scholar
46 Wuttig, M., Li, J. and Craciunescu, C., Scr. Metall. Mater. 44, 2393 (2001).CrossRefGoogle Scholar
47 Sato, M., Okazaki, T., Furuya, Y., Kishi, Y. and Wuttig, M., Mater. Trans. 45, 204 (2004).CrossRefGoogle Scholar
48 Brown, P. J., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K.-U., Oikawa, K., Ouladdiaf, B. and Ziebeck, K. R. A., J. Phys.: Condens. Matter 17, 1301 (2005).Google Scholar
49 Lee, Y., Rhee, J. Y. and Harmon, B. N., Phys. Rev. B 66, 054424 (2002).CrossRefGoogle Scholar
50 Shapiro, S. M., unpublished neutron scattering data (2009).Google Scholar
51 Dannenberg, A., Gruner, M. E., Wuttig, M. and Entel, P., EDP Sciences, Proc. ESOMAT 2009, 04004 (2009).Google Scholar
52 Uijttewaal, M. A., Hickel, T., Neugebauer, J., Gruner, M. E. and Entel, P., Phys. Rev. Lett. 102, 035702 (2009).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New Functional Magnetic Shape Memory Alloys from First-Principles Calculations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

New Functional Magnetic Shape Memory Alloys from First-Principles Calculations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

New Functional Magnetic Shape Memory Alloys from First-Principles Calculations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *