Hostname: page-component-5d59c44645-lfgmx Total loading time: 0 Render date: 2024-03-02T13:27:10.283Z Has data issue: false hasContentIssue false

New Defect Related Phenomena in Semiconductor Heterolayers and Superlattices

Published online by Cambridge University Press:  26 February 2011

Federico Capasso
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Fabio Beltram
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access


Recent work on defect related phenomena in heterojunctions and quantum well structures is reviewed. These include situations in which quantum wells behave as deep traps and the use of shallow and deep centers as new tools for band structure engineering. Among the latter tunable band discontinuities and the artificial tailoring of superlattice states via δ-doping techniques are discussed.

Research Article
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



[1]Capasso, F., Allam, J., Cho, A. Y., Mohammed, K., Malik, R. J., Hutchinson, A. L. and Sivco, D., Appl. Phys. Lett. 48, 1294 (1986).Google Scholar
[2]Chuang, S. L. and Hess, K., J. Appl. Phys. 59, 2885 (1986).Google Scholar
[3]Levine, B. F., Choi, K. K., Bethea, C. G., Walker, J. and Malik, R. J., Appl. Phys. Lett. 51, 934 (1987).Google Scholar
[4]Allam, J., Capasso, F., Alavi, K. and Cho, A. Y., IEEE Electron Dev. Lett. EDL–8, 4 (1987).Google Scholar
[5]Lang, D. V., Panish, M. B., Capasso, F., Allam, J., Hamm, R. A., and Sargent, A. N., and Tsang, W. T., Appl. Phys. Lett. 50, 736 (1987).Google Scholar
[6]Casey, H. C. Jr, Cho, A. Y., Lang, D. V., Nicollian, E. H., and Foy, P. W., J. Appl. Phys. 50 3484 (1979).Google Scholar
[7]Batey, J., Wright, S. L., and DiMaria, J., J. Appl. Phys,. 57, 484 (1985).Google Scholar
[8]Forrest, S. R., Schmidt, P. H., Wilson, R. B., and Kaplan, M. L., Appl. Phys. Lett. 45, 1199 (1984).Google Scholar
[9]Capasso, F., Cho, A. Y., Mohammed, K., Foy, P. W., Appl. Phys. Lett. 46, 664 (1985); J. Vac. Sci. Technol. B3, 1245 (1985).Google Scholar
[10]Niles, D. W., Margaritondo, G., Perfetti, P., Quaresima, C., Capozi, M., Appl. Phys. Lett. 47, 1092 (1985); P. Perfetti et al., Phys. Rev. Lett 57, 1065 (1986).Google Scholar
[11]Miller, R. C., Kleinman, D. A. and Gossard, A. C., Phys. Rev. B 29, 7085 (1984).Google Scholar
[12]Capasso, F., Mohammed, K. and Cho, A. Y., J. Vac. Sci. Technol. B 3, 1245 (1985).Google Scholar
[13]Capasso, F., Mohammed, K. and Cho, A. Y., Phys. Rev. Lett. 57, 2303 (1986).Google Scholar
[14]Lucovsky, G., Solid State Commun. 3, 299 (1965).Google Scholar
[15]Beltram, F., and Capasso, F. unpublished data.Google Scholar
[16]Bastard, G., Phys. Rev. B 24, 5693 (1981).Google Scholar
[17]Kronig, R. de L. and Penney, W. G., Proc. Roy. Soc. of London A 130, 499 (1931).Google Scholar
[18] The following material parameters are assumed: ΔEc, = 271 meV, m*= 0.096mO in the Gao 7 Alo 3As barrier layer and m* = 0.067mo in the GaAs well layer.Google Scholar
[19]Deveaud, B., Lambert, B., Plot, B., Chomette, A., Regreny, A., Bourgoin, J. C., and Stievenard, D., J. Appl. Phys. 62, 3772 (1987).Google Scholar