Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T03:06:14.792Z Has data issue: false hasContentIssue false

Nanoscale Surface Patterning

Published online by Cambridge University Press:  15 February 2011

Meng Yu
Affiliation:
(albena@purdue.edu)Department of Biomedical Engineering and Department of Chemistry Purdue University, West Lafayette, IN 47907
Albena Ivanisevic
Affiliation:
(albena@purdue.edu)Department of Biomedical Engineering and Department of Chemistry Purdue University, West Lafayette, IN 47907
Get access

Abstract

We present a methodology based on Dip-Pen Nanolithography 1 to fabricate nanoscale surface patterns composed of polyelectrolytes. Two widely used polymers Poly(diallyldimethylammonium chloride) (PDDA) and Poly(sodium 4-styrenesulfonate) PSS were chosen as the DPN “inks”. Patterns were created and evaluated on silicon oxide surfaces using an Atomic Force Microscope (AFM). To compare the polymer packing and the height of the nanopatterns, additional fabrication was performed using microcontact printing. We were able to generate structures with better polymer packing using DPN and control the height of the polymer structures more reproducibly compared to microcontact printing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661663.Google Scholar
(2) Ito, T.; Okazaki, S. Nature 2000, 406, 10271031.Google Scholar
(3) Xu, S.; Liu, G. Y. Langmuir 1997, 13, 127129.Google Scholar
(4) Hong, S.; Zhu, J.; Mirkin, C. A. Science 1999, 286, 523525.Google Scholar
(5) Li, Y.; Maynor, B. W.; Liu, J. J. Am. Chem. Soc. 2001, 123, 21052106.Google Scholar
(6) Noy, A.; Miller, A. E.; Klare, J. E.; Weeks, B. L.; Woods, B.W.; DeYoreo, J. J. Nano Lett. 2002, 2, 109112.Google Scholar
(7) Schoer, J. K.; Zamborini, F. P.; Crooks, R. M. J. Phys. Chem. 1996, 100, 1108611091.Google Scholar
(8) Zamborini, F. P.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 97009701.Google Scholar
(9) Gorman, C. B.; Carroll, R. L.; He, Y.; Tian, F.; Fuierer, R. R. Langmuir 2000, 16, 63126316.Google Scholar
(10) Fuierer, R. R.; Carroll, R. L.; Feldheim, D. L.; Gorman, C. B. Adv. Mat. 2002, 14, 154157.Google Scholar
(11) Kurth, D. G.; Bein, T. Langmuir 1993, 9, 29652973.Google Scholar
(12) Oh, S. J., Cho, S.J., Kim, C.O. & Park, J.W. Langmuir 2002, 18, 17641769.Google Scholar
(13) Chen, K. M.; Jiang, X.; Kimerling, L. C.; Hammond, P. T. Langmuir 2000, 16, 78257834.Google Scholar
(14) Zheng, H.; Rubner, M. F.; Hammond, P. T. Langmuir 2002, 18, 45054510.Google Scholar
(15) Jiang, X. P.; Zheng, H. P.; Gourdin, S.; Hammond, P. T. Langmuir 2002, 18, 26072615.Google Scholar