Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-xvx2z Total loading time: 0.281 Render date: 2021-07-27T06:48:19.380Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Nanoengineering of Carbon Nanotubes and the Status of its Applications

Published online by Cambridge University Press:  15 March 2011

Yoshikazu Nakayama
Affiliation:
Department of Physics & Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Seiji Akita
Affiliation:
Department of Physics & Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Get access

Abstract

We have developed a well-controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named nanotube cartridge. We have found the ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope. Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope. The nanotube probes have been applied for observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in scanning-electron-microscope and operated to carry nanomaterials in a scanning probe microscope.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 147 (1991).CrossRefGoogle Scholar
2. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., and Lieber, C. M., Nature 394, 52 (1998).CrossRefGoogle Scholar
3. Arie, T., Nishijima, H., Akita, S., and Nakayama, Y., J. Vac. Sci. Technol. B 18, 104 (2000).CrossRefGoogle Scholar
4. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E., Nature 384, 147 (1996).CrossRefGoogle Scholar
5. Wong, S. S., Harper, J. D., Lansbury, P. T., and Lieber, C. M., J. Am. Chem. Soc. 120, 603 (1998).CrossRefGoogle Scholar
6. Nishijima, H., Kamo, S., Akita, S., Nakayama, Y., Hohmura, K. I., Yoshimura, S. H., and Takeyasu, K., Appl. Phys. Lett. 74, 4061 (1999).CrossRefGoogle Scholar
7. Akita, S., Nishijima, H., Nakayama, Y., Tokumasu, F., and Takeyasu, K., J. Phys. D: Appl. Phys. 32, 1044 (1999).CrossRefGoogle Scholar
8. Hafner, J. H., Cheung, C. L., and C. M. Lieber: J. Am. Chem. Soc. 121, 9750 (1999).CrossRefGoogle Scholar
9. Kim, P. and Lieber, C. M., Science 286, 2148 (1999).CrossRefGoogle Scholar
10. Yamamoto, K., Akita, S., and Nakayama, Y., J. Phys. D: Appl. Phys. 31, 34 (1998).CrossRefGoogle Scholar
11. Nishijima, H., Akita, S., and Nakayama, Y., Jpn. J. Appl. Phys. 38, 7247 (1999).CrossRefGoogle Scholar
12. Nakayama, Y., Nishijima, H., Akita, S., Hohmura, K. I., Yoshimura, S. H., and Takeyasu, K., J. Vac. Sci. Technol. B 18, 661 (2000).CrossRefGoogle Scholar
13. Akita, S., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., Yamanaka, S., Tsuji, M., and Nosaka, T., Nakayama, Y., Appl. Phys. Lett. 79, 1691 (2001).CrossRefGoogle Scholar
14.The Si tips with electric wires used for the nanotube tweezers were fabricated by Seiko Instruments Inc.Google Scholar
15. Akita, S., Nishijima, H., Kishida, T., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 3724 (2000).CrossRefGoogle Scholar
16. Akita, S., Nishijima, H., and Nakayama, Y., J. Phys. D: Appl. Phys. 33, 2673 (2000).CrossRefGoogle Scholar
17. Uchihashi, T., Choi, N., Tanigawa, M., Ashino, M., Ishikawa, M., Sugawara, Y., Tokumoto, H., Nishijima, H., Akita, S., Nakayama, Y., Yokoyama, K., and Morita, S., Jpn. J. Appl. Phys. 39, L887 (2000).CrossRefGoogle Scholar
18. Umemura, K., Komatsu, J., Uchihashi, T., Choi, N., Ikawa, S., Nishinaka, T., Shibata, T., Nakayama, Y., Katsura, S., Mizuno, A., Tokumoto, H., Ishikawa, M., and Kuroda, R., Biochem. Biophys. Res. Commun. 281, 390 (2001).CrossRefGoogle Scholar
19. Nagao, E., Nishijima, H., Akita, S., Nakayama, Y., and Dvorak, J. A., J. Electron. Microscopy 49, 453 (2000).CrossRefGoogle Scholar
20. Hohmura, K. I., Itokazu, Y., Yoshimura, S. H., Mizuguchi, G., Masamura, Y., Takeyasu, K., Shiomi, Y., Tsurimoto, T., Nishijima, H., Akita, S., and Nakayama, Y., J. Electron. Microscopy 49, 415 (2000).CrossRefGoogle Scholar
21. Shiomi, Y., Usukura, J., Masamura, Y., Takeyasu, K., Nakayama, Y., Obuse, C., Yoshikawa, H., and Tsurimoto, T., Proc. National Acad. Sci. USA 97, 14127 (2000).CrossRefGoogle Scholar
22. Yasutake, M., Keisoku and Seigyo (in Japanese), 38, 769 (1999).Google Scholar
23. Jarvis, S. P., Uchihashi, T., Ishida, T., Tokumoto, H., and Nakayama, Y., J. Phys. Chem. B 104, 6091 (2000).CrossRefGoogle Scholar
24. Takahashi, S., Akita, S., Kishida, K., and Nakayama, Y., Jpn. J. Appl. Phys. 40, 4314 (2001).CrossRefGoogle Scholar
25. Okazaki, A., Akita, S., Nishijima, H., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 3744 (2000).CrossRefGoogle Scholar
26. Okazaki, A., Kishida, T., Akita, S., Nishijima, H., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 7067 (2000).CrossRefGoogle Scholar
27. Shimizu, T., Tokumoto, H., Akita, S., and Nakayama, Y., Surface Science 486, L455 (2001).CrossRefGoogle Scholar
28. Arie, T., Yoshida, N., Akita, S., and Nakayama, Y., J. Phys. D: Appl. Phys. 34, L1 (2001)CrossRefGoogle Scholar
29. Akita, S., Nishijima, H., Kishida, T., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 7086 (2000).CrossRefGoogle Scholar
30. Akita, S. and Nakayama, Y., Jpn. J. Appl. Phys. 40, 4289 (2001).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoengineering of Carbon Nanotubes and the Status of its Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanoengineering of Carbon Nanotubes and the Status of its Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanoengineering of Carbon Nanotubes and the Status of its Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *