Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T11:34:02.995Z Has data issue: false hasContentIssue false

Nanodisperse Many-Particle-Systems: Concept, Structure-Property Relationships and Characterization Strategy

Published online by Cambridge University Press:  01 February 2011

Vladimir P. Oleshko*
Affiliation:
University of Virginia, Department of Materials Science & Engineering, Charlottesville, VA 22904–4745
Get access

Abstract

Nanodisperse many-particle-systems (MPS), often forming compact matter, consist of atomic/molecular nano-sized building units, which interact with each other. The interactions among clusters and with the embedding matrix mainly determine the macroscopic properties of the material. The functional properties of nanostructured matter depend on a number of parameters that describe the single cluster (structure, chemical composition, size and shape), the near-order and far-order effects of a given cluster and which can be modeled using the concept of MPS. The specified parameters have to be considered in a detailed multilevel ultramicroscopic and analytical characterization, and several can be manipulated to tailor new materials with desired optical, electronic or catalytic properties. Such approach provides logical synergism between modeling, engineering and characterization of disperse composite nanomaterials by the combination of analytical electron microscopy and image analysis techniques, as illustrated by examples utilizing chemically stabilized “giant” clusters of noble metals and multifractal percolation nanostructures of Ag filaments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kreibig, U., Quinten, M. and Schöenauer, D., Physica A 157, 244261 (1989).Google Scholar
[2] Oleshko, V., Gijbels, R. and Amelinckx, S., in Encyclopedia of Analytical Chemistry, edited by Mayer, R., (John Wiley & Sons, Chichester, 2000), pp. 90889120.Google Scholar
[3] Batson, P. E., Ultramicroscopy 96 239249 (2003).Google Scholar
[4] Oleshko, V. P., in Industrial Applications of Electron Microscopy, edited by Li, Z. R., (M. Dekker, New York, 2002), pp. 51112.Google Scholar
[5] Oleshko, V. P. and Howe, J. M., J. Soc. Photogr. Sci. Technol. Japan 65 (5), 332341 (2002).Google Scholar
[6] Oleshko, V. P., Murayama, M. and Howe, J. M., Microsc. Microanal. 8 (4), 350364 (2002).Google Scholar
[7] Moiseev, I. I., Kozitsyna, N. Y., Kochubey, D. I., Kolomijchuk, V. N. and Zamaraev, K. I., J. Organometal. Chem. 451, 231241 (1993).Google Scholar
[8] Oleshko, V., Volkov, V., Gijbels, R., Jacob, W., Vargaftik, M., Moiseev, I. and Van Tendeloo, G., Z. Phys. D. 34, 283291 (1995).Google Scholar
[9] Schmid, G., in: Clusters, edited by Clarke, M. J., (Springer-Verlag, Berlin, 1985), pp. 5185.Google Scholar
[10] Blagutina, V. V., Kokorin, A. I., Oleshko, V. P. and Shafirovich, V. Y., Docl. Akad. 314, 882885 (1990).Google Scholar
[11] Kovtun, G., Kameneva, T., Hladyi, S., Starchevsky, M., Pazdersky, Y., Stolaroov, I., Vargaftik, M. and Moiseev, I., Adv. Synth. Catal. 344, 957964 (2002).Google Scholar
[12] Volokitin, Y., Sinzig, J., de Jong, L. J., Schmid, G., Vargaftik, M. N. and Moiseev, I. I., Nature 384, 621623 (1996).Google Scholar
[13] Paulus, P. M., Goessens, A., Thiel, R. C., van der, A. M. Kraan, G., Schmid, and de Jongh, L. J., Phys. Rev. B 64, 205418–118 (2001).Google Scholar
[14] Schmid, G., J. Chem. Soc., Dalton Trans. 7, 10771082 (1998).Google Scholar
[15] Schmid, G. and Beyer, N., Europ. J. Inorg. Chem. 5, 835837 (2000).Google Scholar
[16] Liu, S., Maoz, R., Schmid, G. and Sagiv, J., Nano Lett. 2 (10), 10551060 (2002).Google Scholar
[17] Wyrwa, D., Beyer, N. and Schmid, G., Nano Lett. 2 (4), 419421 (2002).Google Scholar
[18] Reuter, T., Vidoni, O. and Schmid, G., Nano Lett. 2 (7), 709711 (2002).Google Scholar
[19] Moiseev, I.I., Rudy, R.I., Cherkashina, N.V., Shubochkin, L.K., Kocubei, D.I., Novgorodov, B.N., Kryukova, G.A., Kolomiychuk, V.N. and Vargaftik, M.N., Inorg. Chim. Acta 280, 339347 (1998).Google Scholar
[20] Boyen, H. G., Kastle, G., Weigl, F., Ziemann, P., Schmid, G., Garnier, M. G. and Oelhafen, P., Phys. Rev. Lett. 87 (27), 276401–14 (2001).Google Scholar