Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T06:54:24.715Z Has data issue: false hasContentIssue false

Morphology of Silicon Islands Grown By Selective Epitaxy Over Silicon Dioxide

Published online by Cambridge University Press:  28 February 2011

S.T. Liu
Affiliation:
Honeywell Physical Sciences Center, Bloomington, Minnesota 55420
K. Newstrom
Affiliation:
Honeywell Physical Sciences Center, Bloomington, Minnesota 55420
M. Hibbs-Brenner
Affiliation:
Honeywell Physical Sciences Center, Bloomington, Minnesota 55420
R.J. Stokes
Affiliation:
Honeywell Physical Sciences Center, Bloomington, Minnesota 55420
B. Hoefflinger
Affiliation:
Purdue University, West Lafayette, Indiana, 47907.
G. Neudeck
Affiliation:
Purdue University, West Lafayette, Indiana, 47907.
R. Zingg
Affiliation:
Purdue University, West Lafayette, Indiana, 47907.
L. Bousse
Affiliation:
Stanford University, Stanford, California 94305.
J.D. Meindl
Affiliation:
Stanford University, Stanford, California 94305.
Get access

Abstract

We studied the selective epitaxial deposition of silicon in patterned oxide-free regions over silicon dioxide in a RF-heated, commercial, reduced-pressure epitaxial reactor, using SiH2Cl2/HCl/H2 gas system. We found that etching into silicon occurs at the high end of HCl content, and nucleation on the silicon dioxide at the low end of HCl content. The selective epitaxial growth of silicon islands is obtained in between.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Honeywell Solid State Laboratory, Plymouth, MN 55441

References

REFERENCES

1.Gibbons, J.F. and Lee, K.F., IEEE EDL–1, 117 (1980).Google Scholar
2.Goeloe, G.T., Maby, E.W., Silversmith, D.J., Mountain, R.W., and Antoniadia, D.A., IEDM Technical Digest, pp. 554556, Dec. 1981.Google Scholar
3.Colinge, J.P., Demoulin, E., and Lobet, M., IEEE ED–29, 585 (1982).Google Scholar
4.Kawamura, S., Sasaki, H., Iwai, T., Nakano, M., and Takagi, M., IEEE EDL–4, No. 10, October 1983, pp. 366368.Google Scholar
5.Hoefflinger, B., Liu, S.T., and Vajdic, B., J. Solid-State Circuits, Vol. SC–19, 37 (1984).Google Scholar
6.Jastrezebski, L., Corboy, J.F., McGinn, J.T. and Pagliaro, R. Jr, J. Electrochem. Soc. 130, 1571 (1983) and L. Jastrezebski, J. Cryst. Growth 63, 493 (1983). D.D. Rathman, D.J. Silversmith, and J.A. Burns, J. Electrochem. Soc.129, 2303 (1982), D.R. Bradbury, T.I. Kamins and C.W. Tsao, J. Appl. Phys. 55, 519 (1984).Google Scholar
7.Liu, S.T., Tufte, O.N., Newstrom, K., Hoefflinger, B., Neudeck, G., and Zingg, R., 6th University/Government/Industry Microelectronics Symposium, Auburn, Alabama, June 1985.Google Scholar