Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T07:27:53.609Z Has data issue: false hasContentIssue false

Monoliths for Partial Oxidation Catalysis*

Published online by Cambridge University Press:  15 February 2011

L. D. Schmidt
Affiliation:
Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455
A. Dietz III
Affiliation:
Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Monolith catalysts are effective for partial oxidation reactions at high temperatures at contact times between 10−4 and 10−2 sec. We summarize results for three reactions: (1) syngas by direct oxidation of CH4, (2) olefins by oxidative dehydrogenation of alkanes, and (3) HCN by ammoxidation of CH4, and we consider what features of monoliths create optimal selectivity with high conversions. Monoliths used are noble metal films coated on ceramic foams, extruded ceramics, ceramic fibers, and woven Pt-10%Rh gauze catalysts. Effects of metals and geometries of the ceramics are ceramics are compared to show how these factors influence activity and selectivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This research is partially supported by DOE under grant No. DE-FG02-88ER13878 and by NSF under grant No. CTS-9311295

References

REFERENCES

1. Handforth, S. L., and Tilley, J. N., Ind. & Eng. Chem. 26 (12), 12871292 (1934).Google Scholar
2. Pignet, T., and Schmidt, L. D., Chem. Eng. Sci. 29 11231131 (1974).Google Scholar
3. Pignet, T., and Schmidt, L. D., J. Catal. 40 212225 (1975).Google Scholar
4. Heck, R. M., Bonacci, J. C., Hatfield, R., and Hsiung, T. H., Ind. Eng. Chem. Process. Des. Dev. 21 (1), 7379 (1981).Google Scholar
5. Lee, H. C., and Farrauto, R. J., Ind. Eng. Chem. Res. 28 15 (1989).Google Scholar
6. Farrauto, R. J., and Lee, H. C., Ind. Eng. Chem. Res. 29 (7), 11251129 (1990).Google Scholar
7. Homer, B. T., Platinum Metals Rev. 35 (2), 5864 (1991).Google Scholar
8. Pan, B. Y. K., J. Catal. 21 (1), 2738 (1971).Google Scholar
9. Satterfield, C. N. Heterogeneous Catalysis in Industrial Practice; 2 ed.; (McGraw-Hill, Inc., New York, 1991), pp. 267337.Google Scholar
10. Hasenberg, D., and Schmidt, L. D., J. Catal. 91 (1), 116131 (1985).Google Scholar
11. Hasenberg, D., and Schmidt, L. D., J. Catal. 97 (1), 156168 (1986).Google Scholar
12. Hasenberg, D., and Schmidt, L. D., J. Catal. 104 (2), 441453 (1987).Google Scholar
13. Hickman, D. A., Huff, M., and Schmidt, L. D., Ind. Eng. Chem. Res. 32 809817 (1993).Google Scholar
14. Waletzko, N., and Schmidt, L. D., AIChE J. 34 (7), 11461156 (1987).Google Scholar
15. Hickman, D. A., and Schmidt, L. D., Science 259 343346 (1993).Google Scholar
16. Torniainen, P. M., Chu, X., and Schmidt, L. D., J. Catal. 146 (1), 110 (1994).Google Scholar
17. Hickman, D. A., and Schmidt, L. D., J. Catal. 138 267282 (1992).Google Scholar
18. Hickman, D. A., Haupfear, E. A., and Schmidt, L. D., Catal. Lett. 17 223237 (1993).Google Scholar
19. Huff, M., and Schmidt, L. D., J. Phys. Chem. 97 (45), 1181511822 (1993).Google Scholar
20. Huff, M., Tomiainen, P. M., Hickman, D. A., and Schmidt, L. D., (1993c).Google Scholar
21. Huff, M., and Schmidt, L. D., J. Catal. submitted (1994).Google Scholar
22. Hickman, D. A., and Schmidt, L. D., AIChE Journal 39 (7), 11641177 (1993).Google Scholar
23. Dietz, A. G. III, and Schmidt, L. D., (to be published).Google Scholar