Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-29T15:22:03.322Z Has data issue: false hasContentIssue false

Molecular Dynamics Studies of Nanoparticles of Energetic Materials

Published online by Cambridge University Press:  01 February 2011

Saman Alavi
Affiliation:
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Gustavo F. Velardez
Affiliation:
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Donald L. Thompson
Affiliation:
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Get access

Abstract

The structural properties of several nanoparticles of 2,4,6,8,10,12-hexanitrohexaazaiso-wurtzitane, HNIW or CL-20, are studied by using molecular dynamics simulations. The internal structure of the CL-20 molecule is held rigid and the intermolecular interactions in the nanoparticles are taken from a previously developed force field. [Sorescu et al., J. Phys. Chem. B, 102, 948 (1998)] Molecular dynamics simulations of solid-like and annealed nanoparticles with 48 and 88 CL-20 molecules have been carried out in the solid-state range of temperatures from 50 to 500 K. The center-of-mass to center-of-mass radial distribution functions, dipole-dipole correlation function, the orientations of the surface dipoles, and the density of the nanoparticles were calculated at fixed temperatures for the nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Borman, S., Chem. Eng. News 72, 18 (1994).Google Scholar
2. Wardle, R. B., Hinshaw, J. C., Braithwaite, P., and Rose, M., Energetic Materials Technology. Manufacturing and Processing 27, 1 (Karlsruhe, Germany, 1996).Google Scholar
3. Foltz, M. F., Coon, C. L., García, F., and Nichols, A. L., Prop. Explos. Pyrotech. 19, 19 (1994);Google Scholar
Kim, J.-H., Park, Y.-C., Yin, Y.-J., and Han, J.-S., J. Chem. Eng. Japan 31, 478 (1998).Google Scholar
4. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B 102, 948 (1998).Google Scholar
5. A compilation of physical constants for CL-20 along with literature references may be found at: a) http://www.vj.yu/vti/ntp/rad2000/6–2000/Lukic/eandelkovic.htm; b) http://roguesci.org/megalomania/explo/HNIW.html.Google Scholar
6. Klabunde, K. J., Editor, Nanoscale Materials in Chemistry, (Wiley, New York, 2001).Google Scholar
7. Gleiter, H., Prog. Mater. Res. 33, 223 (1989).Google Scholar
8. Buffat, Ph. and Borel, J. P., Phys. Rev. A. 13, 2287 (1976).Google Scholar
9. Castro, T., Reifenberger, R., Choi, E., and Andrés, R. P., Phys. Rev. B. 42, 8548 (1990).Google Scholar
10. (a) Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G., and Allen, L. H., Phys. Rev. Lett. 77, 99 (1996);Google Scholar
(b) Grönbeck, H., Tománek, D., Kim, S. G., and Rosén, A., Chem. Phys. Lett. 264, 39 (1997);Google Scholar
(c) Westergren, J., Nordholm, S., and Rosén, A.. Phys. Chem. Chem. Phys. 5, 136 (2003).Google Scholar
11. Goldstein, A. N., Echer, C. M., and Alivisatos, A. P., Science 256, 1425 (1992).Google Scholar
12. Alivisatos, A. P., Science 271, 933 (1996).Google Scholar
13. Egorov, A. V., Brodskaya, E. N., and Laaksonen, A., J. Chem. Phys. 118, 6380 (2003).Google Scholar
14. Campbell, T., Kalia, R. J., Nakono, A., Vashishta, P., Ogata, S., and Rodgers, S., Phys. Rev. Lett. 82, 4866 (1999);Google Scholar
Kalia, R. J., Campbell, T., Chaterjee, A., Nakono, A., Vashishta, P., and Ogata, S., Comp. Phys. Comm. 128, 245 (2000).Google Scholar
15. Alavi, S., Mintmire, J. W., and Thompson, D. L., “Molecular Dynamics Simulation of the Oxidation of Aluminum Nanoparticles”, submitted.Google Scholar
16. Northby, J. A., J. Chem. Phys. 87, 6166 (1987).Google Scholar
17. Romero, D., Barrón, C., and Gómez, S., Comp. Phys. Comm. 123, 87 (1999).Google Scholar
18. Doye, J. P. and Wales, D. J., J. Chem. Phys. 102, 9659 (1995);Google Scholar
Wales, D. J. and Doye, J. P. K., J. Phys. Chem. A. 101, 5111 (1997);Google Scholar
Doye, J. P. K., Wales, D. J., and Miller, M. A., J. Chem. Phys. 109, 8143 (1998).Google Scholar
19. Proykova, A. and Berry, R. S., Z. Phys. D. 40, 215 (1997).Google Scholar
20. Del Mistro, G. and Stace, A. J., J. Chem. Phys. 98, 3905 (1993).Google Scholar
21. Wales, D. J. and Ohmine, I., J. Chem. Phys. 98, 7245 (1993).Google Scholar
22. Boutin, A., Maillet, J.-B., and Fuchs, A. H., J. Chem. Phys. 99, 3905 (1993).Google Scholar
23. Torchet, G., de Feraudy, M.-F., Boutin, A., and Fuchs, A. H., J. Chem. Phys. 105, 3671 (1996).Google Scholar
24. Calvo, F., J. Phys. Chem. B 105, 2183 (2001).Google Scholar
25. Wright, D. and El-Shall, M. S., J. Chem. Phys. 100, 3791 (1994).Google Scholar
26. Chuko, B. and Bartell, L. S., J. Phys. Chem. 97, 9969 (1993).Google Scholar
27. de Jongh, J., Editor, Physics and Chemistry of Metal Cluster Compounds, (Kluwer, Dordrecht, 1994).Google Scholar
28. Bai, H. Y., Luo, J. L., Jin, D., and Sun, J. R., J. Appl. Phys. 79, 361 (1996).Google Scholar
29. Reiss, H. and Wilson, I. B., J. Colloid Sci. 3, 551 (1948).Google Scholar
30. Kunz, R. E. and Berry, R. S., Phys. Rev. Lett. 71, 3987 (1993).Google Scholar
31. Zhao, S. J., Wand, S. Q., Cheng, D. Y., and Ye, H. Q., J. Phys. Chem. B 105, 12857 (2001).Google Scholar
32. Shi, F. G., J. Mater. Res. 9, 1307 (1994).Google Scholar
33. Alavi, S. and Thompson, D. L., “A Molecular Dynamics Study of Structural and Physical Properties of Nitromethane Nanoparticles”, submitted.Google Scholar
34. Tappan, B. C. and Brill, T. in “Thermal Decomposition of Energetic Materials 86. Cryogel Synthesis of Nanocrystalline CL-20 Coated with Cured Nitrocellulose.” Prop. Explos. Pyrotech. (2003), in press.Google Scholar
35. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. A. 105, 9336 (2001).Google Scholar
36. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. A. 104, 8406 (2000).Google Scholar
37. Agrawal, P. M., Rice, B. M., and Thompson, D. L., J. Chem. Phys. 119, 9617 (2003).Google Scholar
38. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B. 101, 798 (1997).Google Scholar
39. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B. 103, 989 (1999).Google Scholar
40. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B. 102, 8386 (1998).Google Scholar
41. Breneman, C. M. and Wiberg, K. B., J. Comput. Chem. 11, 361 (1990).Google Scholar
42. Forester, T. R. and Smith, W., Editors, DL_POLY 2.12, CCLRC, Daresbury Laboratory, 1995.Google Scholar