Hostname: page-component-6d856f89d9-72csx Total loading time: 0 Render date: 2024-07-16T06:12:52.009Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation on Σ5 Grain Boundaries of Copper Bicrystal under Tensile and Shear Deformation

Published online by Cambridge University Press:  17 January 2014

Liang. Zhang
Affiliation:
School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
Cheng. Lu
Affiliation:
School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
Kiet. Tieu
Affiliation:
School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
Get access

Abstract

Molecular Dynamics simulation are employed to investigate the structures and mechanical behavior of both symmetric and asymmetric Σ5[0 0 1] tilt grain boundaries (GBs) of copper bicrystal under uniaxial tension and shear deformation. Simulation results indicate that the Σ5 asymmetric GBs can facet into their corresponding symmetric GB structures. The maximum tensile stress of symmetric GBs is higher than the asymmetric ones at both 10 K and 300 K, which suggests the symmetric GBs may have a more stable boundary structures. All the Σ5 GBs investigate in this study can migrate under the shear deformation with different velocity. The migration of Σ5 symmetric GBs is realized by uniform displacement of local atoms and rotation of the atomic group in “E” structural unit, while for the asymmetric GBs, the migration is identified to be a diffusion-related process result from local atoms shuffling.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sutton, A.P., Balluffi, R.W., Interfaces in crystalline materials, Clarendon, Oxford, 1995.Google Scholar
Mishin, Y., Asta, M., Li, J., Acta Materialia. 58, 11171151 (2010).CrossRefGoogle Scholar
Rohrer, G.S., Saylor, D.M., El Dasher, B., Adams, B.L., Rollett, A.D., Wynblatt, P., Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. 95, 197214 (2004).Google Scholar
Saylor, D.M., El Dasher, B.S. and Rollett, A.D., Acta Materialia. 52, 36493655 (2004).CrossRefGoogle Scholar
Kim, C.-S., Rollett, A.D., Rohrer, G.S., Scripta Materialia. 54, 10051009 (2006).CrossRefGoogle Scholar
Minkwitz, C., Herzig, C., Rabkin, E., Gust, W., Acta Materialia. 47, 12311239 (1999).CrossRefGoogle Scholar
Miyamoto, H., Ikeuchi, K., Mimaki, T., Scripta Metallurgica. 50, 14171421 (2004).CrossRefGoogle Scholar
Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D., Physical Review B - Condensed Matter and Materials Physics. 63, (2001).CrossRefGoogle Scholar
Schiøtz, J., Di Tolla, F.D., Jacobsen, K.W., Nature. 391, 561563 (1998).CrossRefGoogle Scholar
Rittner, J.D.S.D.N., Physical Review, B: Condensed Matter. 54, 69997015 (1996).CrossRefGoogle Scholar
Spearot, D.E., Jacob, K.I., McDowell, D.L., International Journal of Plasticity. 23, 143160 (2007).CrossRefGoogle Scholar
Tschopp, M.A., McDowell, D.L., International Journal of Plasticity. 24, 191217 (2008).CrossRefGoogle Scholar
Cahn, J.W., Mishin, Y., Suzuki, A., Acta Materialia. 54, 49534975 (2006).CrossRefGoogle Scholar
Hillert, M., Scripta Metallurgica. 17, 237240 (1983).CrossRefGoogle Scholar
Brechet, Y.J.M., Purdy, G.R., Acta Metallurgica. 37, 22532259 (1989).CrossRefGoogle Scholar
Balluffi, R.W., Cahn, J.W., Acta Metallurgica. 29, 493500 (1981).CrossRefGoogle Scholar
Merkle, K.L., Thompson, L.J., Materials Letters. 48, 188193 (2001).CrossRefGoogle Scholar
Babcock, S.E., Balluffi, R.W., Acta Metallurgica. 37, 23572365 (1989).CrossRefGoogle Scholar
Babcock, S.E., Balluffi, R.W., Acta Metallurgica. 37, 23672376 (1989).CrossRefGoogle Scholar