Hostname: page-component-788cddb947-kc5xb Total loading time: 0 Render date: 2024-10-11T22:16:16.671Z Has data issue: false hasContentIssue false

Modifying the Pore Size of Resorcinol Formaldehyde Aerogels for Fabrication of Hollow Spheres for Direct Drive ICF Experiments

Published online by Cambridge University Press:  01 February 2011

Reny Paguio
Affiliation:
paguior@fusion.gat.com, General Atomics, California, United States
Chris A. Federick
Affiliation:
frederick@fusion.gat.com, General Atomics, San Diego, California, United States
Jan Ilavsky
Affiliation:
ilavsky@aps.anl.gov, Argonne National Laboratory, Argonne, Illinois, United States
Jared F. Hund
Affiliation:
hund@fusion.gat.com, General Atomics, San Diego, California, United States
Abbas Nikroo
Affiliation:
nikroo@fusion.gat.com, General Atomics, San Diego, California, United States
Mary A. Thi
Affiliation:
mary.thi@gat.com, General Atomics, San Diego, California, United States
Get access

Abstract

This work investigates an alternative way to modify the pore size of a 100 mg/cc resorcinol formaldehyde (R/F) aerogel without any significant change to the aerogel target density. This was successfully accomplished by an addition of hydrophilic polymer additive [Poly Vinyl Alcohol (PVA) or Poly Acrylic Acid (PAA)] to the R/F precursor solution which acts as an impurity in the reaction. The polymer can modify the cross linking or aggregation of the primary particles which can change the structure formation of the aerogel, thus changing the pore size. This paper will discuss this process modification and the fabrication of hollow, large pore R/F aerogel spheres that are used for direct drive inertial confinement fusion (ICF) cryogenic ice layering experiments at the University of Rochester Laboratory for Laser Energetics (LLE). The aerogels were characterized using scanning electron microscopy (SEM), nitrogen gas adsorption, and ultra small angle x-ray scattering (USAXS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skupsky, S., et al., Proc. of 3rd Inertial Fusion Sciences and Applications 2003 (IFSA 2003), Monterey, CA (2003); American Nuclear Society (2004) pp. 61–64.Google Scholar
2. Schafer, D.W., et al., J. Non-Crst. Solids 186, 159 (1995).Google Scholar
3. Frederick, C.A., et al., Fusion Sci. Technol. 49, 657 (2006).Google Scholar
4. Paguio, R., et al., Fusion Sci. Technol. 51, 682 (2007).Google Scholar
5. Nikroo, A., et al., Fusion Sci. Technol. 45, 84 (2004).Google Scholar
6. Paguio, R., et al., Polymeric Material: Science & Engineering 95, 872 (2006).Google Scholar
7. Pekala, R.W., et al., J. Mater. Sci. 24, 3321 (1989).Google Scholar
8. Ilavsky, J., et al., submitted to J. Appl. Cryst. (2008).Google Scholar
9. Long, G.G., et al., J. Appl. Cryst. 24, 30 (1991).Google Scholar
10. Lambert, S.M., et al., J. Appl. Polymer. Sci. 65, 2111 (1997).Google Scholar
11. Letts, S.A., et al., J. Vac. Sci. Technol. 13, 739 (1981).Google Scholar
12. Brunauer, S., et al., J. Am. Chem. Soc. 60, 309 (1983).Google Scholar
13. Beaucage, G., et al., J. of Appl. Cryst. 28, 717 (1995).Google Scholar
14. Han, S., et al., Chem. Commun. 1955 (1999).Google Scholar