Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-19T09:53:12.140Z Has data issue: false hasContentIssue false

Modeling the Effect of Annealing and Regioregularity on Electron and Hole Transport Characteristics of Bulk Heterojunction Organic Photovoltaic Devices

Published online by Cambridge University Press:  01 February 2011

Shabnam Shambayati
Affiliation:
misnomered@gmail.com, University of British Columbia, Electrical and Computer Engineering, Vancouver, Canada
Bobak Gholamkhass
Affiliation:
bgholamk@sfu.ca, Simon Fraser University, Chemistry, Burnaby, Canada
Soheil Ebadian
Affiliation:
soheile@ece.ubc.ca, University of British Columbia, Electrical and Computer Engineering, Vancouver, Canada
Steven Holdcroft
Affiliation:
holdcrof@sfu.ca, Simon Fraser University, Chemistry, Burnaby, Canada
Peyman Servati
Affiliation:
peymans@ece.ubc.ca
Get access

Abstract

In this study, the dark current-voltage characteristics of electron-only and hole-only poly(3-hexyl thiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) as a function of regioregularity (RR) and annealing time is investigated using the mobility edge (ME) model. This model is used to analyze the degradation of electron and hole mobilities as a function of annealing time for 93%-RR and 98%-RR P3HT:PCBM devices. The hole mobility is almost unchanged by the RR nature of P3HT and thermal annealing. The electron mobility, however, behaves differently after annealing. The electron mobility of 98%-RR devices, which is initially higher than that of the 93%-RR devices, experiences a steep decline with annealing. Based on ME analysis, this is due to an increase in trap states in the exponential tail caused by phase segregation of solid state blends of 98%-RR polymer and PCBM. The electron mobility of 93%-RR devices increases with annealing due to an optimization of nano-phase separated morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Baumann, A., Lorrmann, J., Deibel, C., and Dyakonov, V., Appl. Phys. Lett. 93, 252104 (2008).Google Scholar
2 Yang, F. and Forrest, S.R., ACS Nano 2, 10221032 (2008).Google Scholar
3 Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C., and Ree, M., Nat Mater 5, 197203 (2006).Google Scholar
4 Mihailetchi, V.D., Xie, H., deBoer, B., Koster, L., and Blom, P., Advanced Functional Materials 16, 699708 (2006).Google Scholar
5 Bertho, S., Janssen, G., Cleij, T.J., Conings, B., Moons, W., Gadisa, A., D'Haen, J., Goovaerts, E., Lutsen, L., Manca, J., and Vanderzande, D., Solar Energy Materials and Solar Cells 92, 753760 (2008).Google Scholar
6 Sivula, K., Ball, Z., Watanabe, N., and Frchet, J., Advanced Materials 18, 206210 (2006).Google Scholar
7 Sivula, K., Luscombe, C.K., Thompson, B.C., and Frchet, J.M.J., J. Am. Chem. Soc 128, 1398813989 (2006).Google Scholar
8 Campoy-Quiles, M., Ferenczi, T., Agostinelli, T., Etchegoin, P.G., Kim, Y., Anthopoulos, T.D., Stavrinou, P.N., Bradley, D.D.C., and Nelson, J., Nat Mater 7, 158164 (2008).Google Scholar
9 Hoppe, H. and Sariciftci, N.S., J. Mater. Chem. 16, 4561 (2006).Google Scholar
10 Salleo, A., Chen, T.W., Vlkel, A.R., Wu, Y., Liu, P., Ong, B.S., and Street, R.A., Physical Review B70, 115311 (2004).Google Scholar
11 Kumar, V., Jain, S.C., Kapoor, A.K., Poortmans, J., and Mertens, R., J. Appl. Phys. 94, 1283 (2003).Google Scholar
12 Kymakis, E., Servati, P., Tzanetakis, P., Koudoumas, E., Kornilios, N., Rompogiannakis, I., Franghiadakis, Y., and Amaratunga, G.A.J., Nanotechnology 18, 435702 (2007).Google Scholar
13 Servati, P., Nathan, A., and Amaratunga, G., Phys. Rev. B74, 245210 (2006).Google Scholar
14 Gholamkhass, B., Peckham, T.J., and Holdcroft, S., Polym. Chem. (2010).Google Scholar
15 Lenes, M., Morana, M., Brabec, C.J., and Blom, P.W.M., Advanced Functional Materials 19, 11061111 (2009).Google Scholar
16 Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A., Advanced Functional Materials 15, 16171622 (2005).Google Scholar
17 Ebadian, S., Gholamkhass, B., Shambayati, S., Holdcroft, S., and Servati, P., Solar Energy Materials and Solar Cells In Press, Corrected Proof (2010).Google Scholar