Hostname: page-component-594f858ff7-jtv8x Total loading time: 0 Render date: 2023-06-08T18:58:34.438Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Modeling of elastic, piezoelectric and optical properties of vertically correlated GaN/AlN quantum dots

Published online by Cambridge University Press:  01 February 2011

Sławomir P. Łepkowski
Affiliation:
Unipress, Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokołowska 29, 01–142 Warszawa, Poland Faculty of Mathematics and Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01–815., Poland
Grzegorz Jurczak
Affiliation:
Institute of Fundamental Technological Research, ul. Łwiętokrzyska 21, 00–049 Warszawa, Poland
Paweł Dłużewski
Affiliation:
Unipress, Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokołowska 29, 01–142 Warszawa, Poland
Tadeusz Suski
Affiliation:
Unipress, Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokołowska 29, 01–142 Warszawa, Poland
Get access

Abstract

We theoretically investigate elastic, piezoelectric and optical properties of wurtzite GaN/AlN quantum dots, having hexagonal pyramid-shape, stacked in a multilayer. We show that the strain existing in quantum dots and barriers depends significantly on the distance between the dots i.e. on the width of AlN barriers. For typical QDs, having the base diameter of 19.5nm, the drop of the electrostatic potential in the quantum dot region slightly decreases with decreasing of the barrier width. This decrease is however much smaller for QDs than for superlattice of GaN/AlGaN quantum wells, with thickness similar to the height of QDs. Consequently, the band-to-band transition energies in the vertically correlated GaN/AlN QDs show unexpected, rather weak dependence on the width of AlN barriers. Increasing the QD base diameter leads to stronger decreasing dependence of the band-to-band transition energies vs. the width of AlN barriers, similar to that observed for superlattieces of QWs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arakawa, Y., Someya, T. and Tachibana, K., IEICE trans. Electron., E-83-C, 564, (2000).Google Scholar
2. De Rinaldis, S., D'Amico, I., Biolatti, E., Rinaldi, R., Cingolani, R. and Rossi, F., Phys. Rev. B, 65, R081309, (2002);CrossRefGoogle Scholar
De Rinaldis, S., D'Amico, I. and Rossi, F., Phys. Rev. B, 69, 235316, (2004).CrossRefGoogle Scholar
3. Beschoten, B., Johnston-Halperin, E., Young, D.K., Poggio, M., Grimaldi, J.E., Keller, S., DenBaars, S.P., Mishra, U.K., Hu, E.L. and Awschalom, D.D., Phys. Rev. B, 63, R121202, (2001).CrossRefGoogle Scholar
4. Simon, J., Pelekanos, N.T., Adelmann, C., Martinez-Guerrero, E., Andre, R., Daudin, B., Si Dang, Le and Mariette, H., Phys. Rev. B, 68, 035312, (2003).CrossRefGoogle Scholar
5. Gogneau, N., Fossard, F., Monroy, E., Monnoye, S., Mank, H., Daudin, B., Appl. Phys.Lett., 84, 4224, (2004);CrossRefGoogle Scholar
Hashiono, K., Kako, S., Arakawa, Y., Appl. Phys.Lett., 85, 1262, (2004).CrossRefGoogle Scholar
6. Chamard, V., Schulli, T., Sztucki, M., Metzger, T.H., Sarigiannidou, E., Rouviere, J.-L., Tolan, M., Adelmann, C. and Daudin, B., Phys. Rev. B, 69, 125327, (2004).CrossRefGoogle Scholar
7. Chamard, V., Metzger, T.H., Sztucki, M., Holy, V., Tolan, M., Bellet-Amalric, E., Adelmann, C., Daudin, B. and Mariette, H., Europhys. Lett., 63, 268, (2003).CrossRefGoogle Scholar
8. Andreev, A.D., O'Reilly, E.P., Phys. Rev. B, 62, 15851, (2000).CrossRefGoogle Scholar
9. Saito, T., Arakawa, Y., Physica E, 15, 169, (2002).CrossRefGoogle Scholar
10. Fonoberov, V.A. and Balandin, A.A., J. Appl. Phys., 94, 7178, (2003).CrossRefGoogle Scholar
11. Dłużewski, P., Maciejewski, G., Jurczak, G., Kret, S., Laval, J. Y., Comp. Mat. Sci., 29, 379, (2004)CrossRefGoogle Scholar
12. Vurgaftman, I., Meyer, J.R. and Ram-Mohan, L.R., J. Appl. Phys., 89, 5815, (2001)CrossRefGoogle Scholar
13. Łepkowski, S.P., Teisseyre, H., Suski, T., Perlin, P., Grandjean, N. and Massies, J., Appl. Phys. Lett., 79, 1483, (2001) and REFERENCES thereinCrossRefGoogle Scholar
14. Fiorentini, V., Bernardini, F., Della Sala, F., Di Carlo, A., Lugli, P., Phys. Rev. B, 60, 8849, (1999)CrossRefGoogle Scholar
15. Grandjean, N., Damilano, B., Dalmasso, S., Leroux, M., Laugt, M. and Massies, J., J. Appl. Phys., 86, 3714, (1999)CrossRefGoogle Scholar