Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T13:04:42.910Z Has data issue: false hasContentIssue false

Mocvd of Copper from New and Liquid Precursors (hfac)CuL, Where L = 1-Pentene, Atms, and Vtmos

Published online by Cambridge University Press:  15 February 2011

H. K. Shin
Affiliation:
Ultra Pure Chemical Inc., 320-5, WonchunDong PaldalGu, SUWON, Kyungkido, KOREA 442-380, upchem@soback.kornet.nm.kr
H. J. Shin
Affiliation:
Ultra Pure Chemical Inc., 320-5, WonchunDong PaldalGu, SUWON, Kyungkido, KOREA 442-380, upchem@soback.kornet.nm.kr
S. J. Lim
Affiliation:
Ultra Pure Chemical Inc., 320-5, WonchunDong PaldalGu, SUWON, Kyungkido, KOREA 442-380, upchem@soback.kornet.nm.kr
D. J. Yoo
Affiliation:
Ultra Pure Chemical Inc., 320-5, WonchunDong PaldalGu, SUWON, Kyungkido, KOREA 442-380, upchem@soback.kornet.nm.kr
N. Y. Oh
Affiliation:
Young Dong High School, 72-7, KyesanRi YoungdongEwp, YoungdongKun, Chungbuk, KOREA 370-800
H. J. Yoo
Affiliation:
Electronics and Telecommunications Research Institute, P.O. BOX 106, Yusong, Taejon, KOREA
J. T. Baek
Affiliation:
Electronics and Telecommunications Research Institute, P.O. BOX 106, Yusong, Taejon, KOREA
C. H. Jun
Affiliation:
Electronics and Telecommunications Research Institute, P.O. BOX 106, Yusong, Taejon, KOREA
Y. T. Kim
Affiliation:
Electronics and Telecommunications Research Institute, P.O. BOX 106, Yusong, Taejon, KOREA
Get access

Abstract

Liquid and volatile (hfac)CuL compounds where hfac = 1,1,1,5,5,5-hexafluoro- 2,4-pentanedionate and L = 1-pentene (1), acetyltrimethylsilane (2), and vinyltri- methoxysilane (3) were newly developed for reproducible copper deposition. During CVD processes, no premature decomposition of the precursor was observed in the source reservoir that contained the mixture of (hfac)CuL and excess free ligand L. Pure Cu films were deposited in the deposition temperature range 180°C ˜ 220°C

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S. P., Gutmann, R. J., Kaloyeros, A. E., and Lanford, W. A., Thin Solid Film 236, 257 (1993).Google Scholar
2. Aoki, T., Wickramanayaka, S., Wrobel, A. M., Nakanishi, Y., and Hatanaka, Y., J. Electrochem. Soc. 142, 166, (1995).Google Scholar
3. Kim, D.–H., Wentorf, R. H., and Gill, W. N., J. Electrochem. Soc. 142, 166, (1995).Google Scholar
4. Li, H., Eisenbraun, E. T., and Kaloyeros, A., J. Vac. Sci. Technol. B, 10, 1337 (1992).Google Scholar
5. Pelleteir, J., Pantel, R., Oberlin, J. C., Pauleau, Y., and Gouy-Pailler, P., J. Appl. Phys. 70, 3862 (1991).Google Scholar
6. Temple, D. and Reisman, A., J. Electrochem. Soc. 136, 3525 (1989).Google Scholar
7. Van Hemert, R. L., Spendlove, L. B., and Sievers, R. B.,J. Electrochem. Soc. 136, 3525 (1989).Google Scholar
8. Baum, T. H. and Larson, C. E., Chem. Mater. 4, 365 (1992).Google Scholar
9. Chi, K.–M., Shin, H.–K., Hampden-Smith, M. J., Kodas, T. T., and Duesler, E. N., Inorg. Chem. 30, 4293 (1991).Google Scholar
10. Chiou, J.–C., Juang, K.–C., and Chen, M.–C., J. Electrochem. Soc. 142, 177, (1995).Google Scholar
11. Farkas, J., Hampden-Smith, M. J., and Kodas, T. T., J. Electrochem. Soc. 142, 177, (1995).Google Scholar
12. Norman, J. A. T., Muratore, B. A., Dyer, P. N., Roberts, D. A., Hochberg, A. K., and Dubois, L.H., Mater. Sci. Eng. B, 17, 87 (1993).Google Scholar
13. Peterson, G. A., Omstead, T. R., Smith, P. M., and Gonzales, M. F., presented at the 1993 Elec. Chem. Soc, May, Honolulu, Hawaii, 1993 (unpublished).Google Scholar
14. Dubois, L. H. and Zegarski, B. R., J. Electrochem. Soc. 139, 3295 (1992).Google Scholar
15. Norman, J. A. T., Muratore, B. A., Dyer, P. N., Roberts, D. A., and Hochberg, A. K., de, J. Physique IV, Colloque C, 2, 271 (1991).Google Scholar
16. Roger, C., Corbitt, T. S., Hampden-Smith, M. J. and Kodas, T. T., Appl. Phys. Lett. 65, 1021 (1994).Google Scholar
17. Jain, A., Chi, K.–M., Hampden-Smith, M. J., Kodas, T. T., Paffett, M. F., and Farr, J. D., J. Mater. Res. 7, 261 (1992).Google Scholar
18. Chi, K.–M., Shin, H.–K., Hamden-Smith, M. J., Kodas, T. T., and Duesler, E. N., Polyhedron 10, 2293 (1991).Google Scholar
19. Shin, H.–K., Chi, K.–M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D., and Paffett, M. F., Chem. Mater. 4, 788 (1992).Google Scholar
20. Shin, H.–K., Chi, K.–M., Hampden-Smith, M. J., Kodas, T. T., Paffett, M. F. and Farr, J. D., Angew. Chem. Adv. Mater. 3, 246 (1991).Google Scholar
21. Shin, H.–K., Chi, K.–M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D., and Paffett, M. F., MRS Symp. Proc. 204, 421 (1990).Google Scholar
22. Choi, E.–S., Park, S.–K., Shin, H.–K., and Lee, H.–H., Appl. Phys. Lett. 68, 1017 (1996).Google Scholar
23. Shin, H.–K., Shin, H.–J., Oh, N.–Y., Yoo, H.–J., Baek, J.–T., Jun, C.–H., and Kim, Y.–T., Chem. mater. Submitted for publication (1996)Google Scholar