Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T12:02:23.170Z Has data issue: false hasContentIssue false

Mirrorless Lasing in Liquid Crystalline Photonic Bandgap Materials

Published online by Cambridge University Press:  15 February 2011

Wenyi Cao
Affiliation:
Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
Antonio Muñoz
Affiliation:
Departamento de Fisica, Universidad Autonoma Metropolitana, Mexico
Peter Palffy-Muhoray
Affiliation:
Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
Bahman Taheri
Affiliation:
Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
Get access

Abstract

Liquid crystals (LC) are promising photonic bandgap (PBG) materials. Certain LC phases have spatially modulated ground states and effectively form self-assembled PBG structures. These structures can also be made permanent by photopolymerization. Typically, LCs respond readily to applied fields, enabling modulation and switching of the bandgap. Since classical light propagation is forbidden, fluorescent emission in the band gap can lead to population inversion and stimulated emission at the band edges. Mirrorless lasing experiments provide an effective probe of the bandgap. We discuss the underlying physics, and present the results of mirrorless lasing in a variety of cholesteric LC materials, including recent results of photon counting statistics and 3-D lasing in the cholesteric blue phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mathews, J. and Walker, R. L., Mathematical Methods of Physics, Benjamin/Cummings, Menlo Park (1964).Google Scholar
2. Polman, A. and Wiltzius, P., MRS Bulletín, 26 608613 (2001).Google Scholar
3. Busch, K. and John, S., Phys. Rev. Lett. 83, 967970 (1999).Google Scholar
4. Goldberg, L. S. and Schnur, J. M., US Patent 3771065 (1973).Google Scholar
5. Kopp, V. I., Fan, B., Vithana, H. K. M., and Genack, A. Z., Opt. Lett. 23, 17071709 (1998).Google Scholar
6. Taheri, B., Palffy-Muhoray, P., Kabir, H., paper presented at ALCOM Symposium on Chiral Materials and Applications, Cuyahoga Falls, OH, Feb. 18-19 (1999).Google Scholar
7. Taheri, B., Muñoz, A., Palffy-Muhoray, P. and Twieg, R., Mol. Cryst. Liq. Cryst. 358 73 (2001).Google Scholar
8. Alvarez, E., He, M., Muñoz, A., Palffy-Muhoray, P., Serak, S. V., Taheri, B. and Twieg, R., Mol. Cryst. Liq. Cryst. 369 57 (2001).Google Scholar
9. Muñoz, A., Palffy-Muhoray, P., and Taheri, B., Opt. Lett. 26, 804806 (2001).Google Scholar
10. Material supplied by Kim and Finkelmann; similar results were also published in Schmidtke, J., Stille, W., Finkelmann, H. and Kim, S. T., Adv. Mat. 14, 746749 (2002).Google Scholar
11. Finkelmann, H., Kim, S. T., Muñoz, A., Palffy-Muhoray, P. and Taheri, B., Adv. Mat. 13, 10691072 (2001).Google Scholar
12. Cao, H., Ling, Y., Xu, J. Y., Cao, C. Q. and Kumar, P., Phys. Rev. Lett. 86, 45244527 (2001).Google Scholar
13. Loudon, R. in The Quantum Theory of Light 122-123, 274-277 (Oxford University Press, Oxford, 2000).Google Scholar
14. Crooker, P. P., in Chirality in Liquid Crystals (ed. Kitzerow, H. and Bahr, C.) 186222 (Springer-Verlag, New York, 2001).Google Scholar
15. Stegemeyer, H., Blumel, Th., Hiltrop, K., Onusseit, H. and Porsch, F., Liq. Cryst. 1, 328 (1986).Google Scholar
16. Etchegoin, P., Phys. Rev. E 62, 14351437 (2000).Google Scholar
17. Hornreich, R. M. and Shtrikman, S., Phys. Rev. E 47, 20672072 (1993).Google Scholar
18. Cao, W., Muñoz, A., Palffy-Muhoray, P. and Taheri, B., Nature Material 1, 111113 (2002).Google Scholar
19. Notomi, M., Suzuki, H. and Tamamura, T., Appl. Phys. Lett. 78, 13251327 (2001).Google Scholar
20. Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. and Kajiyama, T., Nature Material 1, 6468 (2002).Google Scholar